IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v98y2025ics1059056025001595.html
   My bibliography  Save this article

High-dimensional multi-period portfolio allocation using deep reinforcement learning

Author

Listed:
  • Jiang, Yifu
  • Olmo, Jose
  • Atwi, Majed

Abstract

This paper proposes a novel investment strategy based on deep reinforcement learning (DRL) for long-term portfolio allocation in the presence of transaction costs and risk aversion. We design an advanced portfolio policy framework to model the price dynamic patterns using convolutional neural networks (CNN), capture group-wise asset dependence using WaveNet, and solve the optimal asset allocation problem using DRL. These methods are embedded within a multi-period Bellman equation framework. An additional appealing feature of our investment strategy is its ability to optimize dynamically over a large set of potentially correlated risky assets. The performance of this portfolio is tested empirically over different holding periods, risk aversion levels, transaction cost rates, and financial indices. The results demonstrate the effectiveness and superiority of the proposed long-term portfolio allocation strategy compared to several competitors based on machine learning methods and traditional optimization techniques.

Suggested Citation

  • Jiang, Yifu & Olmo, Jose & Atwi, Majed, 2025. "High-dimensional multi-period portfolio allocation using deep reinforcement learning," International Review of Economics & Finance, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025001595
    DOI: 10.1016/j.iref.2025.103996
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056025001595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2025.103996?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Multi-period portfolio selection; High-dimensional portfolios; Risk aversion; Portfolio constraints; Deep reinforcement learning;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025001595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.