IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v98y2025ics1059056025000784.html
   My bibliography  Save this article

Hybrid ML models for volatility prediction in financial risk management

Author

Listed:
  • Kumar, Satish
  • Rao, Amar
  • Dhochak, Monika

Abstract

Predicting volatility in financial markets is an important task with practical uses in decision-making, regulation, and academic research. This study focuses on forecasting realized volatility in stock indices using advanced machine learning techniques. We examine three key indices: the Shanghai Stock Exchange Composite (SSE), Infosys (INFY), and the National Stock Exchange Index (NIFTY). To achieve this, we propose a hybrid model that combines optimized Variational Mode Decomposition (VMD) with deep learning methods like Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Using data from 2015 to 2022, we analyse how well these models predict volatility. Our findings reveal distinct patterns: the SSE shows high unpredictability, INFY is prone to extreme positive volatility, and NIFTY is relatively moderate. Among the models tested, the Q-VMD-ANN-LSTM-GRU hybrid model consistently performs best, providing highly accurate predictions for all three indices. This model has practical benefits for financial institutions. It improves risk management, supports investment decisions, and provides real-time insights for traders and risk managers. Additionally, it can enhance stress testing and inspire innovative trading strategies. Overall, our study highlights the potential of advanced machine learning, especially hybrid models, to address financial market complexities and improve risk management practices.

Suggested Citation

  • Kumar, Satish & Rao, Amar & Dhochak, Monika, 2025. "Hybrid ML models for volatility prediction in financial risk management," International Review of Economics & Finance, Elsevier, vol. 98(C).
  • Handle: RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025000784
    DOI: 10.1016/j.iref.2025.103915
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056025000784
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2025.103915?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Keywords

    Financial market; Hybrid models; Machine learning; Q-learning algorithm; Risk management; Volatility prediction;
    All these keywords.

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:98:y:2025:i:c:s1059056025000784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.