IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v79y2022icp466-475.html
   My bibliography  Save this article

Optimal time for the excess of loss reinsurance with fixed costs

Author

Listed:
  • Li, Peng
  • Zhou, Ming
  • Yao, Dingjun

Abstract

We consider the optimal excess of loss reinsurance for an insurance company facing a constant fixed cost when reinsurance contract is signed. To maximize the survival probability, the company needs to determine the starting time of reinsurance and the claims covered by insurer. It concludes a combination of optimal stopping and regular stochastic control problems, and we solve it by employing the dynamic programming principle. The results indicate that the maximum amount of loss plays an important role for the optimal timing of excess of loss reinsurance. When the claims have a long tail, the insurer will launch an excess of loss reinsurance no matter how expensive of reinsurance is. When the claims have a finite maximum loss, the insurer will not take the excess of loss reinsurance if the reinsurance is too expensive. In addition, the fixed cost only affects the timing of excess of loss reinsurance, but the relative price between reinsurer and insurer affects both the timing and the retained amount of risks. To explain the results, we also give some numerical examples.

Suggested Citation

  • Li, Peng & Zhou, Ming & Yao, Dingjun, 2022. "Optimal time for the excess of loss reinsurance with fixed costs," International Review of Economics & Finance, Elsevier, vol. 79(C), pages 466-475.
  • Handle: RePEc:eee:reveco:v:79:y:2022:i:c:p:466-475
    DOI: 10.1016/j.iref.2022.02.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056022000478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2022.02.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danping Li & Ximin Rong & Hui Zhao, 2017. "Equilibrium excess-of-loss reinsurance–investment strategy for a mean–variance insurer under stochastic volatility model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 46(19), pages 9459-9475, October.
    2. Li, Peng & Zhou, Ming & Yin, Chuancun, 2015. "Optimal reinsurance with both proportional and fixed costs," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 134-141.
    3. Gu, Ailing & Guo, Xianping & Li, Zhongfei & Zeng, Yan, 2012. "Optimal control of excess-of-loss reinsurance and investment for insurers under a CEV model," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 674-684.
    4. Bjarne Højgaard & Søren Asmussen & Michael Taksar, 2000. "Optimal risk control and dividend distribution policies. Example of excess-of loss reinsurance for an insurance corporation," Finance and Stochastics, Springer, vol. 4(3), pages 299-324.
    5. Dayanik, Savas & Karatzas, Ioannis, 2003. "On the optimal stopping problem for one-dimensional diffusions," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 173-212, October.
    6. Meng, Hui & Zhang, Xin, 2010. "Optimal Risk Control for The Excess of Loss Reinsurance Policies," ASTIN Bulletin, Cambridge University Press, vol. 40(1), pages 179-197, May.
    7. Xin Zhang & Ming Zhou & Junyi Guo, 2007. "Optimal combinational quota‐share and excess‐of‐loss reinsurance policies in a dynamic setting," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 23(1), pages 63-71, January.
    8. Li, Danping & Li, Dongchen & Young, Virginia R., 2017. "Optimality of excess-loss reinsurance under a mean–variance criterion," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 82-89.
    9. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.
    10. T. Choulli & M. Taksar & X. Y. Zhou, 2001. "Excess-of-loss reinsurance for a company with debt liability and constraints on risk reduction," Quantitative Finance, Taylor & Francis Journals, vol. 1(6), pages 573-596.
    11. Liu, Wei & Hu, Yijun, 2014. "Optimal financing and dividend control of the insurance company with excess-of-loss reinsurance policy," Statistics & Probability Letters, Elsevier, vol. 84(C), pages 121-130.
    12. Egami, Masahiko & Young, Virginia R., 2009. "Optimal reinsurance strategy under fixed cost and delay," Stochastic Processes and their Applications, Elsevier, vol. 119(3), pages 1015-1034, March.
    13. Lihua Bai & Junyi Guo & Huayue Zhang, 2010. "Optimal excess-of-loss reinsurance and dividend payments with both transaction costs and taxes," Quantitative Finance, Taylor & Francis Journals, vol. 10(10), pages 1163-1172.
    14. Zhu, Huainian & Cao, Ming & Zhang, Chengke, 2019. "Time-consistent investment and reinsurance strategies for mean-variance insurers with relative performance concerns under the Heston model," Finance Research Letters, Elsevier, vol. 30(C), pages 280-291.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico, Salvatore & Ferrari, Giorgio & Torrente, Maria Laura, 2023. "Irreversible Reinsurance: Minimization of Capital Injections in Presence of a Fixed Cost," Center for Mathematical Economics Working Papers 682, Center for Mathematical Economics, Bielefeld University.
    2. Viktorija Skvarciany & Indrė Lapinskaitė, 2022. "Designing of Optimal Reinsurance Indemnity," Mathematics, MDPI, vol. 10(19), pages 1-8, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan Zhang & Peibiao Zhao & Rufei Ma, 2022. "Robust Optimal Excess-of-Loss Reinsurance and Investment Problem with more General Dependent Claim Risks and Defaultable Risk," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2743-2777, December.
    2. Peng, Xiaofan & Chen, Mi & Guo, Junyi, 2012. "Optimal dividend and equity issuance problem with proportional and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 576-585.
    3. Xue, Xiaole & Wei, Pengyu & Weng, Chengguo, 2019. "Derivatives trading for insurers," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 40-53.
    4. Guan, Huiqi & Liang, Zongxia, 2014. "Viscosity solution and impulse control of the diffusion model with reinsurance and fixed transaction costs," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 109-122.
    5. Chen, Mi & Peng, Xiaofan & Guo, Junyi, 2013. "Optimal dividend problem with a nonlinear regular-singular stochastic control," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 448-456.
    6. Zhang, Nan & Jin, Zhuo & Li, Shuanming & Chen, Ping, 2016. "Optimal reinsurance under dynamic VaR constraint," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 232-243.
    7. Liang, Zhibin & Young, Virginia R., 2012. "Dividends and reinsurance under a penalty for ruin," Insurance: Mathematics and Economics, Elsevier, vol. 50(3), pages 437-445.
    8. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    9. Danping Li & Dongchen Li & Virginia R. Young, 2017. "Optimality of Excess-Loss Reinsurance under a Mean-Variance Criterion," Papers 1703.01984, arXiv.org, revised Mar 2017.
    10. Yan, Tingjin & Park, Kyunghyun & Wong, Hoi Ying, 2022. "Irreversible reinsurance: A singular control approach," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 326-348.
    11. Zhang, Nan & Jin, Zhuo & Qian, Linyi & Fan, Kun, 2019. "Stochastic differential reinsurance games with capital injections," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 7-18.
    12. Zhang, Caibin & Liang, Zhibin, 2022. "Optimal time-consistent reinsurance and investment strategies for a jump–diffusion financial market without cash," The North American Journal of Economics and Finance, Elsevier, vol. 59(C).
    13. Zhao, Hui & Rong, Ximin & Zhao, Yonggan, 2013. "Optimal excess-of-loss reinsurance and investment problem for an insurer with jump–diffusion risk process under the Heston model," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 504-514.
    14. Bai, Lihua & Cai, Jun & Zhou, Ming, 2013. "Optimal reinsurance policies for an insurer with a bivariate reserve risk process in a dynamic setting," Insurance: Mathematics and Economics, Elsevier, vol. 53(3), pages 664-670.
    15. Løkka, Arne & Zervos, Mihail, 2008. "Optimal dividend and issuance of equity policies in the presence of proportional costs," Insurance: Mathematics and Economics, Elsevier, vol. 42(3), pages 954-961, June.
    16. Lv Chen & David Landriault & Bin Li & Danping Li, 2021. "Optimal dynamic risk sharing under the time‐consistent mean‐variance criterion," Mathematical Finance, Wiley Blackwell, vol. 31(2), pages 649-682, April.
    17. Guan, Guohui & Hu, Xiang, 2022. "Equilibrium mean–variance reinsurance and investment strategies for a general insurance company under smooth ambiguity," The North American Journal of Economics and Finance, Elsevier, vol. 63(C).
    18. Kun Wu & Weixing Wu, 2016. "Optimal Controls for a Large Insurance Under a CEV Model: Based on the Legendre Transform-Dual Method," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 14(2), pages 167-178, December.
    19. Cao, Jingyi & Landriault, David & Li, Bin, 2020. "Optimal reinsurance-investment strategy for a dynamic contagion claim model," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 206-215.
    20. Bjarne Højgaard & Michael Taksar, 2004. "Optimal dynamic portfolio selection for a corporation with controllable risk and dividend distribution policy," Quantitative Finance, Taylor & Francis Journals, vol. 4(3), pages 315-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:79:y:2022:i:c:p:466-475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.