IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v62y2019icp20-40.html
   My bibliography  Save this article

Asymmetric jump beta estimation with implications for portfolio risk management

Author

Listed:
  • Alexeev, Vitali
  • Urga, Giovanni
  • Yao, Wenying

Abstract

We evaluate the impact of extreme market shifts on equity portfolios and study the difference in negative and positive reactions to market jumps with implications for portfolio risk management. Employing high-frequency data for the constituents of the S&P500 index over the period 2 January 2003 to 30 December 2017, we investigate to what extent the portfolio exposure to the downside and upside jumps can be mitigated. We contrast the risk exposure of individual stocks with those of the portfolios as the number of holdings increases. Varying the jump identification threshold, we show that the number of holdings required to stabilise portfolios’ sensitivities to negative jumps is higher than when positive jumps are considered and that the asymmetry is more prominent for more extreme events. Ignoring this asymmetry results in under-diversification of portfolios and increases exposure to sudden extreme negative market shifts.

Suggested Citation

  • Alexeev, Vitali & Urga, Giovanni & Yao, Wenying, 2019. "Asymmetric jump beta estimation with implications for portfolio risk management," International Review of Economics & Finance, Elsevier, vol. 62(C), pages 20-40.
  • Handle: RePEc:eee:reveco:v:62:y:2019:i:c:p:20-40
    DOI: 10.1016/j.iref.2019.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056018303344
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2019.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie-Cao He & Hsing-Hua Chang & Ting-Fu Chen & Shih-Kuei Lin, 2023. "Upside and downside correlated jump risk premia of currency options and expected returns," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-58, December.
    2. Azra Zaimovic & Adna Omanovic & Almira Arnaut-Berilo, 2021. "How Many Stocks Are Sufficient for Equity Portfolio Diversification? A Review of the Literature," JRFM, MDPI, vol. 14(11), pages 1-30, November.
    3. Srivastava, Pranjal & Jacob, Joshy, 2022. "Arbitrage constraints and behaviour of volatility components: Evidence from a natural experiment," IIMA Working Papers WP 2022-10-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
    4. Gajurel, Dinesh & Chowdhury, Biplob, 2020. "Realized volatility, jump and beta: evidence from Canadian stock market," Working Papers 2020-11, University of Tasmania, Tasmanian School of Business and Economics.
    5. Dinesh Gajurel & Biplob Chowdhury, 2021. "Realized Volatility, Jump and Beta: evidence from Canadian Stock Market," Applied Economics, Taylor & Francis Journals, vol. 53(55), pages 6376-6397, November.
    6. Mardi Dungey & Jet Holloway & Abdullah Yalaman & Wenying Yao, 2022. "Characterizing financial crises using high-frequency data," Quantitative Finance, Taylor & Francis Journals, vol. 22(4), pages 743-760, April.

    More about this item

    Keywords

    Asymmetric jumps; Systematic risk; Portfolio diversification; Value-at-Risk;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:62:y:2019:i:c:p:20-40. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.