IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v96y2018icp119-131.html
   My bibliography  Save this article

A model-based analysis of the future capacity expansion for German biogas plants under different legal frameworks

Author

Listed:
  • Balussou, D.
  • McKenna, R.
  • Möst, D.
  • Fichtner, W.

Abstract

As for other renewable energy sources in Germany like wind or photovoltaics, biogas has rapidly expanded in the past fifteen years. The installed electricity capacity for German biogas plants increased from 0.2 GWel in 2001 up to about 4.2 GWel by the end of the year 2016. This expansion has been supported in particular by the Renewable Energy Sources Act (EEG) through electricity Feed-In-Tariffs (FITs). However, major uncertainties are linked to the future capacity expansion in particular due to volatile electricity and energy crops prices. Taking into account this situation this paper analyzes possible future developments of the German biogas plant capacity up to 2030. For this purpose, a regional optimization model is employed, with the objective of determining the optimal economic development of the future biogas plants under different legal framework conditions. The base scenario with a constant energy crops cost evolution shows that the EEG 2012 framework -if maintained- would have fostered the development of agricultural plants, especially co-digestion plants valorizing energy crops and manure. The new EEG 2014 stops the expansion of energy crops mono-digestion plants, which will no longer be built due to an unprofitable situation. The German biogas market will thus face a paradigm shift and move towards the increase of biowaste and small-scale manure plants. Further scenarios quantify the impact of a strong variation of three main fundamental drivers, namely the energy crop costs, the EPEX-Peak electricity price and the biowaste valorization revenues, on future capacity developments. Based on the model results recommendations in direction of plant operators and policy-makers are formulated aiming at a more sustainable electricity production from biogas. Further work should consist in integrating the present analysis in national bioenergy models under the EEG 2017 legal framework.

Suggested Citation

  • Balussou, D. & McKenna, R. & Möst, D. & Fichtner, W., 2018. "A model-based analysis of the future capacity expansion for German biogas plants under different legal frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 119-131.
  • Handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:119-131
    DOI: 10.1016/j.rser.2018.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118305495
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gömann, Horst & de Witte, Thomas & Peter, Günter & Tietz, Andreas, 2013. "Auswirkungen der Biogaserzeugung auf die Landwirtschaft," Thünen Reports 10, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    2. Goemann, Horst & Witte de, Thomas & Peter, Guenter & Tietz, Andreas, 2013. "Auswirkungen der Biogaserzeugung auf die Landwirtschaft," Thünen Report 179196, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Zheng & Jingang Chen & Mingyue Zhao & Shikun Cheng & Li-Pang Wang & Heinz-Peter Mang & Zifu Li, 2020. "What Could China Give to and Take from Other Countries in Terms of the Development of the Biogas Industry?," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    2. Hossain, Md. Sanowar & Das, Barun K. & Das, Arnob & Roy, Tamal Krishna, 2024. "Investigating the techno-economic and environmental feasibility of biogas-based power generation potential using food waste in Bangladesh," Renewable Energy, Elsevier, vol. 232(C).
    3. Barros, Murillo Vetroni & Salvador, Rodrigo & de Francisco, Antonio Carlos & Piekarski, Cassiano Moro, 2020. "Mapping of research lines on circular economy practices in agriculture: From waste to energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    4. Venus, Terese E. & Strauss, Felix & Venus, Thomas J. & Sauer, Johannes, 2021. "Understanding stakeholder preferences for future biogas development in Germany," Land Use Policy, Elsevier, vol. 109(C).
    5. Hossain, Md. Sanowar & Masuk, Nahid Imtiaz & Das, Barun K. & Das, Arnob & Kibria, Md. Golam & Chowdhury, Miftahul Mobin & Shozib, Imtiaz Ahmed, 2023. "Theoretical estimation of energy potential and environmental emissions mitigation for major livestock manure in Bangladesh," Renewable Energy, Elsevier, vol. 217(C).
    6. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    7. Briest, Gordon & Lauven, Lars-Peter & Kupfer, Stefan & Lukas, Elmar, 2022. "Leaving well-worn paths: Reversal of the investment-uncertainty relationship and flexible biogas plant operation," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1162-1176.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roesler, Tim & Hassler, Markus, 2019. "Creating niches – The role of policy for the implementation of bioenergy village cooperatives in Germany," Energy Policy, Elsevier, vol. 124(C), pages 95-101.
    2. Auburger, Sebastian & Jacobs, Anna & Märländer, Bernward & Bahrs, Enno, 2016. "Economic optimization of feedstock mix for energy production with biogas technology in Germany with a special focus on sugar beets – Effects on greenhouse gas emissions and energy balances," Renewable Energy, Elsevier, vol. 89(C), pages 1-11.
    3. Guenther-Lübbers, W. & Theuvsen, L., 2015. "Regionalökonomische Effekte der niedersächsischen Biogasproduktion," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 50, March.
    4. Guenther-Lubbers, Welf & Theuvsen, Ludwig, 2014. "Regionalökonomische Effekte Der Niedersächsischen Biogasproduktion," 54th Annual Conference, Goettingen, Germany, September 17-19, 2014 187426, German Association of Agricultural Economists (GEWISOLA).
    5. Becker, Jasmin, 2014. "Unterschiede effizienter Biogaserzeugung - wirtschaftliche und verfahrenstechnische Potenziale," Thünen Working Paper 196913, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    6. Heinrich, F. & Appel, F., 2018. "Do investors ruin Germany s peasant agriculture?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277171, International Association of Agricultural Economists.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:96:y:2018:i:c:p:119-131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.