IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v82y2018ip3p2401-2407.html
   My bibliography  Save this article

State-of-the-art on the development of ultrasonic equipment and key problems of ultrasonic oil prudction technique for EOR in China

Author

Listed:
  • Wang, Zhenjun
  • Gu, Simin

Abstract

As one of EOR techniques, ultrasonic oil production attracts more attention due to its simplicity, lower expenses, good applicability and no reservoir. In this paper, recent progress on ultrasonic oil recovery techniques in China is summarized in view of ultrasonic paraffin inhibiting and crude oil viscosity reduction, ultrasound-chemical combination treatment for the removal of plugs for near-well ultrasonic processing technology and ultrasound-chemical combination demulsification -dehydration. Especially, Recent inventions of ultrasonic oil production equipment for EOR in China are reviewed. The purpose of this paper is to provide reference for the broad applications of ultrasonic oil production for EOR techniques.

Suggested Citation

  • Wang, Zhenjun & Gu, Simin, 2018. "State-of-the-art on the development of ultrasonic equipment and key problems of ultrasonic oil prudction technique for EOR in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2401-2407.
  • Handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2401-2407
    DOI: 10.1016/j.rser.2017.08.089
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117312352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.08.089?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhenjun & Xu, Yuanming & Gu, Yuting, 2015. "A light lithium niobate transducer design and ultrasonic de-icing research for aircraft wing," Energy, Elsevier, vol. 87(C), pages 173-181.
    2. Wang, Zhenjun & Xu, Yuanming, 2015. "Review on application of the recent new high-power ultrasonic transducers in enhanced oil recovery field in China," Energy, Elsevier, vol. 89(C), pages 259-267.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yibing & Xu, Yuanming & Lei, Yuyong, 2018. "An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades," Renewable Energy, Elsevier, vol. 118(C), pages 1015-1023.
    2. Li, Weicheng & Vaziri, Vahid & Aphale, Sumeet S. & Dong, Shimin & Wiercigroch, Marian, 2021. "Energy saving by reducing motor rating of sucker-rod pump systems," Energy, Elsevier, vol. 228(C).
    3. Wang, Yibing & Xu, Yuanming & Huang, Qi, 2017. "Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 638-645.
    4. Wang, Zhenjun & Xu, Yuanming, 2015. "Review on application of the recent new high-power ultrasonic transducers in enhanced oil recovery field in China," Energy, Elsevier, vol. 89(C), pages 259-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:82:y:2018:i:p3:p:2401-2407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.