IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v80y2017icp1312-1320.html
   My bibliography  Save this article

Interfacing applications for uncertainty reduction in smart energy systems utilizing distributed intelligence

Author

Listed:
  • Nguyen, Phuong H.
  • Blaauwbroek, Niels
  • Nguyen, Cuong
  • Zhang, Xu
  • Flueck, Alexander
  • Wang, Xiaoyu

Abstract

Under the transition towards sustainable smart energy systems (SES), utilization of distributed intelligence has been gradually proposed along with the expansion of Information and Communication Technology (ICT) infrastructure and advanced control services. Distributed intelligence (DI)-based control and management solutions proved a perfect complement to the existing control structures to handle the SES’ uncertainty which is getting quite complex with different system layers and involved stakeholders. Advanced modelling and simulation techniques are crucial here to realize and enable the applications of DI to enhance grid reliability while optimize market operation. However, several challenges arise while modelling DI applications and integrating them in the simulation platform due to the complexity of the multi-disciplinary smart grids. As an activity of IEEE Task Force on Interfacing Techniques for Simulation Tools, this paper mainly reviews the interface issues between modelling and simulation of physical, ICT, and application layers, as well as business processes of the whole smart energy systems. By means of a conceptual framework for SES development, this paper aims to position most of DI-based control applications in specific research domain and elaborate on their interface with the whole SES context.

Suggested Citation

  • Nguyen, Phuong H. & Blaauwbroek, Niels & Nguyen, Cuong & Zhang, Xu & Flueck, Alexander & Wang, Xiaoyu, 2017. "Interfacing applications for uncertainty reduction in smart energy systems utilizing distributed intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1312-1320.
  • Handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1312-1320
    DOI: 10.1016/j.rser.2017.05.180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117308158
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.05.180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Glachant, Jean-Michel & Ruester, Sophia, 2014. "The EU internal electricity market: Done forever?," Utilities Policy, Elsevier, vol. 30(C), pages 1-7.
    2. Moradi, Mohammad H. & Razini, Saleh & Mahdi Hosseinian, S., 2016. "State of art of multiagent systems in power engineering: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 814-824.
    3. Ramos, Ariana & De Jonghe, Cedric & Gómez, Virginia & Belmans, Ronnie, 2016. "Realizing the smart grid's potential: Defining local markets for flexibility," Utilities Policy, Elsevier, vol. 40(C), pages 26-35.
    4. Veldman, Else & Gibescu, Madeleine & Slootweg, Han (J.G.) & Kling, Wil L., 2013. "Scenario-based modelling of future residential electricity demands and assessing their impact on distribution grids," Energy Policy, Elsevier, vol. 56(C), pages 233-247.
    5. Amjady, N. & Keynia, F., 2009. "Short-term load forecasting of power systems by combination of wavelet transform and neuro-evolutionary algorithm," Energy, Elsevier, vol. 34(1), pages 46-57.
    6. Glachant, Jean-Michel & Ruester, Sophia, 2014. "The EU internal electricity market: Done forever?," Utilities Policy, Elsevier, vol. 31(C), pages 221-228.
    7. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Niels Blaauwbroek & Phuong Nguyen & Han Slootweg, 2018. "Data-Driven Risk Analysis for Probabilistic Three-Phase Grid-Supportive Demand Side Management," Energies, MDPI, vol. 11(10), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    2. Zajdler, Robert, 2020. "The role of capacity in the EU internal electricity market in the context of the general court's judgment of 15 November 2018. In case T-793/14 Tempus energy," Energy Policy, Elsevier, vol. 143(C).
    3. Joalland, Olivier & Pereau, Jean-Christophe & Rambonilaza, Tina, 2019. "Bargaining local compensation payments for the installation of new power transmission lines," Energy Economics, Elsevier, vol. 80(C), pages 75-85.
    4. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    5. Charis Vlados & Dimos Chatzinikolaou & Foteini Kapaltzoglou, 2021. "Energy Market Liberalisation in Greece: Structures, Policy and Prospects," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 115-126.
    6. Torriti, Jacopo, 2014. "Privatisation and cross-border electricity trade: From internal market to European Supergrid?," Energy, Elsevier, vol. 77(C), pages 635-640.
    7. Gaffney, F. & Deane, J.P. & Gallachóir, B.P.Ó, 2017. "A 100 year review of electricity policy in Ireland (1916–2015)," Energy Policy, Elsevier, vol. 105(C), pages 67-79.
    8. Hyland, Marie, 2016. "Restructuring European electricity markets – A panel data analysis," Utilities Policy, Elsevier, vol. 38(C), pages 33-42.
    9. Bigerna, Simona & Bollino, Carlo Andrea & Ciferri, Davide & Polinori, Paolo, 2017. "Renewables diffusion and contagion effect in Italian regional electricity markets: Assessment and policy implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 199-211.
    10. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    11. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2020. "Heterogeneous impacts of regulatory policy stringency on the EU electricity Industry:A Bayesian shrinkage dynamic analysis," Energy Policy, Elsevier, vol. 142(C).
    12. Ramos, Ariana & De Jonghe, Cedric & Gómez, Virginia & Belmans, Ronnie, 2016. "Realizing the smart grid's potential: Defining local markets for flexibility," Utilities Policy, Elsevier, vol. 40(C), pages 26-35.
    13. de Frutos Cachorro, J. & Willeghems, G. & Buysse, J., 2019. "Strategic investment decisions under the nuclear power debate in Belgium," Resource and Energy Economics, Elsevier, vol. 57(C), pages 156-184.
    14. Lockwood, Matthew & Froggatt, Antony & Wright, Georgina & Dutton, Joseph, 2017. "The implications of Brexit for the electricity sector in Great Britain: Trade-offs between market integration and policy influence," Energy Policy, Elsevier, vol. 110(C), pages 137-143.
    15. Do, Hung Xuan & Nepal, Rabindra & Pham, Son Duy & Jamasb, Tooraj, 2024. "Electricity market crisis in Europe and cross border price effects: A quantile return connectedness analysis," Energy Economics, Elsevier, vol. 135(C).
    16. Hélène Le Cadre & Anthony Papavasiliou & Yves Smeers, 2015. "Wind Farm Portfolio Optimization under Network Capacity Constraints," Post-Print hal-01007992, HAL.
    17. Jean-Michel Glachant, 2014. "Governance in Network Industries: Lessons Learnt from New Institutional Economics," RSCAS Working Papers 2014/67, European University Institute.
    18. Guido Pepermans, 2019. "European energy market liberalization: experiences and challenges," International Journal of Economic Policy Studies, Springer, vol. 13(1), pages 3-26, January.
    19. Lindberg, Marie Byskov & Markard, Jochen & Andersen, Allan Dahl, 2019. "Policies, actors and sustainability transition pathways: A study of the EU’s energy policy mix," Research Policy, Elsevier, vol. 48(10).
    20. Nikolaos Koltsaklis & Athanasios Dagoumas, 2018. "Policy Implications of Power Exchanges on Operational Scheduling: Evaluating EUPHEMIA’s Market Products in Case of Greece," Energies, MDPI, vol. 11(10), pages 1-26, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:80:y:2017:i:c:p:1312-1320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.