IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp588-596.html
   My bibliography  Save this article

Efficiency in angolan hydro-electric power station: A two-stage virtual frontier dynamic DEA and simplex regression approach

Author

Listed:
  • Barros, C.P.
  • Wanke, Peter
  • Dumbo, Silvestre
  • Manso, Jose Pires

Abstract

This research focuses on the efficiency assessment of Angolan hydro-electric power stations using the VDRAM (Virtual Frontier Dynamic Range Adjusted Model) DEA. In VDRAM, the reference and the DMU evaluation sets are different, thus allowing higher score discrimination. In this research, the VDRAM model is used firstly in a two-stage approach. In the second stage, Simplex Regression is adopted to handle skewed and asymmetrical efficiency scores. Results indicate that energy efficiency of hydro-electric power stations in Angola is impacted by the river proximity, location of the station, and the cost structure. Results also indicate the inexistence of a learning curve. Policy implications are discussed in terms of possible measures such as privatization and human resource training so that a learning curve is boosted while labor costs are kept under control. Finally, the cost-structure advantages of water-to-wire power stations are also discussed observing sustainable development practices encompassing social, agricultural, and logistical aspects for the country.

Suggested Citation

  • Barros, C.P. & Wanke, Peter & Dumbo, Silvestre & Manso, Jose Pires, 2017. "Efficiency in angolan hydro-electric power station: A two-stage virtual frontier dynamic DEA and simplex regression approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 588-596.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:588-596
    DOI: 10.1016/j.rser.2017.04.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117306056
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    2. Barros, Carlos Pestana, 2008. "Efficiency analysis of hydroelectric generating plants: A case study for Portugal," Energy Economics, Elsevier, vol. 30(1), pages 59-75, January.
    3. Barndorff-Nielsen, O. E. & Jørgensen, B., 1991. "Some parametric models on the simplex," Journal of Multivariate Analysis, Elsevier, vol. 39(1), pages 106-116, October.
    4. Wang, Zhao-Hua & Zeng, Hua-Lin & Wei, Yi-Ming & Zhang, Yi-Xiang, 2012. "Regional total factor energy efficiency: An empirical analysis of industrial sector in China," Applied Energy, Elsevier, vol. 97(C), pages 115-123.
    5. Lukas Steinmann & Peter Zweifel, 2001. "The Range Adjusted Measure (RAM) in DEA: Comment," Journal of Productivity Analysis, Springer, vol. 15(2), pages 139-144, March.
    6. Pestana Barros, Carlos & Sequeira Antunes, Olinda, 2011. "Performance assessment of Portuguese wind farms: Ownership and managerial efficiency," Energy Policy, Elsevier, vol. 39(6), pages 3055-3063, June.
    7. Pang, Rui-Zhi & Deng, Zhong-Qi & Hu, Jin-li, 2015. "Clean energy use and total-factor efficiencies: An international comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1158-1171.
    8. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    9. Jacobson, Mark Z. & Delucchi, Mark A., 2011. "Providing all global energy with wind, water, and solar power, Part I: Technologies, energy resources, quantities and areas of infrastructure, and materials," Energy Policy, Elsevier, vol. 39(3), pages 1154-1169, March.
    10. Tone, Kaoru & Tsutsui, Miki, 2010. "Dynamic DEA: A slacks-based measure approach," Omega, Elsevier, vol. 38(3-4), pages 145-156, June.
    11. Barros, Carlos Pestana & Chen, Zhongfei & Managi, Shunsuke & Antunes, Olinda Sequeira, 2013. "Examining the cost efficiency of Chinese hydroelectric companies using a finite mixture model," Energy Economics, Elsevier, vol. 36(C), pages 511-517.
    12. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    13. Bazargan, Massoud & Vasigh, Bijan, 2003. "Size versus efficiency: a case study of US commercial airports," Journal of Air Transport Management, Elsevier, vol. 9(3), pages 187-193.
    14. Barros, Carlos Pestana & Peypoch, Nicolas, 2009. "An evaluation of European airlines' operational performance," International Journal of Production Economics, Elsevier, vol. 122(2), pages 525-533, December.
    15. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2007. "Measurement of returns to scale using a non-radial DEA model: A range-adjusted measure approach," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1918-1946, February.
    16. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    17. Cui, Qiang & Li, Ye, 2015. "Evaluating energy efficiency for airlines: An application of VFB-DEA," Journal of Air Transport Management, Elsevier, vol. 44, pages 34-41.
    18. Cui, Qiang & Li, Ye, 2015. "An empirical study on the influencing factors of transportation carbon efficiency: Evidences from fifteen countries," Applied Energy, Elsevier, vol. 141(C), pages 209-217.
    19. Barros, Carlos P. & Peypoch, Nicolas, 2007. "The determinants of cost efficiency of hydroelectric generating plants: A random frontier approach," Energy Policy, Elsevier, vol. 35(9), pages 4463-4470, September.
    20. Kim, Kyung-Taek & Lee, Deok Joo & Park, Sung-Joon & Zhang, Yanshuai & Sultanov, Azamat, 2015. "Measuring the efficiency of the investment for renewable energy in Korea using data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 694-702.
    21. Liu, C.H. & Lin, Sue J. & Lewis, Charles, 2010. "Evaluation of thermal power plant operational performance in Taiwan by data envelopment analysis," Energy Policy, Elsevier, vol. 38(2), pages 1049-1058, February.
    22. Wang, Zhaohua & Feng, Chao, 2015. "Sources of production inefficiency and productivity growth in China: A global data envelopment analysis," Energy Economics, Elsevier, vol. 49(C), pages 380-389.
    23. Zhou, P. & Ang, B.W. & Poh, K.L., 2008. "A survey of data envelopment analysis in energy and environmental studies," European Journal of Operational Research, Elsevier, vol. 189(1), pages 1-18, August.
    24. Stein, Eric W., 2013. "A comprehensive multi-criteria model to rank electric energy production technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 640-654.
    25. Aida, Kazuo & Cooper, William W. & Pastor, Jésus T. & Sueyoshi, Toshiyuki, 1998. "Evaluating Water Supply Services in Japan with RAM: a Range-adjusted Measure of Inefficiency," Omega, Elsevier, vol. 26(2), pages 207-232, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ruchuan & Wei, Qian & Li, Aijun & Ren, LiYing, 2022. "Measuring efficiency and technology inequality of China's electricity generation and transmission system: A new approach of network Data Envelopment Analysis prospect cross-efficiency models," Energy, Elsevier, vol. 246(C).
    2. Pavala Malar Kannan & Govindan Marthandan & Rathimala Kannan, 2021. "Modelling Efficiency of Electric Utilities Using Three Stage Virtual Frontier Data Envelopment Analysis with Variable Selection by Loads Method," Energies, MDPI, vol. 14(12), pages 1-21, June.
    3. Papież, Monika & Śmiech, Sławomir & Frodyma, Katarzyna, 2019. "Factors affecting the efficiency of wind power in the European Union countries," Energy Policy, Elsevier, vol. 132(C), pages 965-977.
    4. Hashem Omrani & Khatereh Shafaat & Arash Alizadeh, 2019. "Integrated data envelopment analysis and cooperative game for evaluating energy efficiency of transportation sector: a case of Iran," Annals of Operations Research, Springer, vol. 274(1), pages 471-499, March.
    5. Yujiao Xian & Ke Wang & Xunpeng Shi & Chi Zhang & Yi-Ming Wei & Zhimin Huang, 2018. "Carbon emissions intensity reduction target for China¡¯s power industry: An efficiency and productivity perspective," CEEP-BIT Working Papers 117, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    6. Zhou, Xiaoyang & Chen, Hao & Chai, Jian & Wang, Shouyang & Lev, Benjamin, 2020. "Performance evaluation and prediction of the integrated circuit industry in China: A hybrid method," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
    7. Sun, Chuanwang & Liu, Xiaohong & Li, Aijun, 2018. "Measuring unified efficiency of Chinese fossil fuel power plants: Intermediate approach combined with group heterogeneity and window analysis," Energy Policy, Elsevier, vol. 123(C), pages 8-18.
    8. Goodness C. Aye & Giray Gozgor & Rangan Gupta, 2020. "Dynamic and Asymmetric Response of Inequality to Income Volatility: The Case of the United Kingdom," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 147(3), pages 747-762, February.
    9. Rodrigues, Antonio Carlos & Martins, Ricardo Silveira & Wanke, Peter Fernandes & Siegler, Janaina, 2018. "Efficiency of specialized 3PL providers in an emerging economy," International Journal of Production Economics, Elsevier, vol. 205(C), pages 163-178.
    10. Usman Akbar & József Popp & Hameed Khan & Muhammad Asif Khan & Judit Oláh, 2020. "Energy Efficiency in Transportation along with the Belt and Road Countries," Energies, MDPI, vol. 13(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wanke, Peter & Barros, C.P., 2016. "Efficiency in Latin American airlines: A two-stage approach combining Virtual Frontier Dynamic DEA and Simplex Regression," Journal of Air Transport Management, Elsevier, vol. 54(C), pages 93-103.
    2. Cui, Qiang & Li, Ye, 2018. "Airline dynamic efficiency measures with a Dynamic RAM with unified natural & managerial disposability," Energy Economics, Elsevier, vol. 75(C), pages 534-546.
    3. Sueyoshi, Toshiyuki & Yuan, Yan & Goto, Mika, 2017. "A literature study for DEA applied to energy and environment," Energy Economics, Elsevier, vol. 62(C), pages 104-124.
    4. Ye Li & Qiang Cui, 2017. "Airline energy efficiency measures using the Virtual Frontier Network RAM with weak disposability," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(4), pages 479-504, May.
    5. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures under CNG2020 strategy: An application of a Dynamic By-production model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 130-143.
    6. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    7. Seufert, Juergen Heinz & Arjomandi, Amir & Dakpo, K. Hervé, 2017. "Evaluating airline operational performance: A Luenberger-Hicks-Moorsteen productivity indicator," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 104(C), pages 52-68.
    8. Chen, Zhongfei & Wanke, Peter & Antunes, Jorge Junio Moreira & Zhang, Ning, 2017. "Chinese airline efficiency under CO2 emissions and flight delays: A stochastic network DEA model," Energy Economics, Elsevier, vol. 68(C), pages 89-108.
    9. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    10. Cui, Qiang & Li, Ye & Yu, Chen-lu & Wei, Yi-Ming, 2016. "Evaluating energy efficiency for airlines: An application of Virtual Frontier Dynamic Slacks Based Measure," Energy, Elsevier, vol. 113(C), pages 1231-1240.
    11. Cui, Qiang & Arjomandi, Amir, 2021. "Airline energy efficiency measures based on an epsilon-based Range-Adjusted Measure model," Energy, Elsevier, vol. 217(C).
    12. Losa, Eduardo Tola & Arjomandi, Amir & Hervé Dakpo, K. & Bloomfield, Jason, 2020. "Efficiency comparison of airline groups in Annex 1 and non-Annex 1 countries: A dynamic network DEA approach," Transport Policy, Elsevier, vol. 99(C), pages 163-174.
    13. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2015. "Evaluating airline efficiency: An application of Virtual Frontier Network SBM," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 1-17.
    14. Heydari, Chiman & Omrani, Hashem & Taghizadeh, Rahim, 2020. "A fully fuzzy network DEA-Range Adjusted Measure model for evaluating airlines efficiency: A case of Iran," Journal of Air Transport Management, Elsevier, vol. 89(C).
    15. Li, Ye & Cui, Qiang, 2017. "Carbon neutral growth from 2020 strategy and airline environmental inefficiency: A Network Range Adjusted Environmental Data Envelopment Analysis," Applied Energy, Elsevier, vol. 199(C), pages 13-24.
    16. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    17. Chen Chunhua & Liu Haohua & Tang Lijun & Ren Jianwei, 2021. "A Range Adjusted Measure of Super-Efficiency in Integer-Valued Data Envelopment Analysis with Undesirable Outputs," Journal of Systems Science and Information, De Gruyter, vol. 9(4), pages 378-398, August.
    18. Li, Ye & Wang, Yan-zhang & Cui, Qiang, 2016. "Has airline efficiency affected by the inclusion of aviation into European Union Emission Trading Scheme? Evidences from 22 airlines during 2008–2012," Energy, Elsevier, vol. 96(C), pages 8-22.
    19. Cui, Qiang & Li, Ye, 2017. "Airline efficiency measures using a Dynamic Epsilon-Based Measure model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 121-134.
    20. Ke Wang & Xueying Yu, 2017. "Industrial Energy and Environment Efficiency of Chinese Cities: An Analysis Based on Range-Adjusted Measure," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(04), pages 1023-1042, July.

    More about this item

    Keywords

    C6; D2; Q4; Angola; Hydro-electric power stations; VDRAM; Two-stage; Simplex Regression;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D2 - Microeconomics - - Production and Organizations
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:588-596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.