IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v76y2017icp516-528.html
   My bibliography  Save this article

Review and qualitative analysis of submodule-level distributed power electronic solutions in PV power systems

Author

Listed:
  • Khan, O.
  • Xiao, W.

Abstract

Conventional photovoltaic (PV) systems make use of series-connection of PV panels, arranged into strings, in order to provide a voltage-stack at the input of grid-tied inverters. The string solution forces all PV modules to share the same current which results in power loss in presence of any mismatching condition. The emergence of Distributed Maximum Power Point Tracking (DMPPT) PV systems, which increase the level of MPPT fineness, provided an effective solution to mitigate the mismatch impact on energy harvest. The earlier DMPPT systems consisted of module-level power electronic solutions such as microinverter, DC Power Optimizer (DCPO), and Differential Power Processor (DPP). The recent studies increase the level of MPPT granularity and focus further to the submodule-level in order to alleviate the intra-panel mismatch problem and maximize solar energy harvest. The research on the topic resulted in a group of DMPPT systems that are classified as the submodule integrated converters (subMICs), submodule-level DPP (subDPP) and submodule-level isolated-port DPP (subIPDPP). This study focuses on the various implementations of these architectures and provides an in-depth analysis regarding to their advantages and limitations.

Suggested Citation

  • Khan, O. & Xiao, W., 2017. "Review and qualitative analysis of submodule-level distributed power electronic solutions in PV power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 516-528.
  • Handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:516-528
    DOI: 10.1016/j.rser.2017.03.073
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117304094
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.073?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    2. Jose-María Sierra-Fernández & Sarah Rönnberg & Juan-José González de la Rosa & Math H. J. Bollen & José-Carlos Palomares-Salas, 2019. "Application of Spectral Kurtosis to Characterize Amplitude Variability in Power Systems’ Harmonics," Energies, MDPI, vol. 12(1), pages 1-15, January.
    3. Ji-Hoon Lim & Dong-In Lee & Ye-Ji Hyeon & Jae-Hyuk Choi & Han-Shin Youn, 2022. "Differential Power Processing Converter with an Integrated Transformer and Secondary Switch for Power Generation Optimization of Multiple Photovoltaic Submodules," Energies, MDPI, vol. 15(3), pages 1-18, February.
    4. Jawad Ahmad & Alessandro Ciocia & Stefania Fichera & Ali Faisal Murtaza & Filippo Spertino, 2019. "Detection of Typical Defects in Silicon Photovoltaic Modules and Application for Plants with Distributed MPPT Configuration," Energies, MDPI, vol. 12(23), pages 1-26, November.
    5. Kamran Ali Khan Niazi & Yongheng Yang & Tamas Kerekes & Dezso Sera, 2021. "A Simple Mismatch Mitigating Partial Power Processing Converter for Solar PV Modules," Energies, MDPI, vol. 14(8), pages 1-18, April.
    6. Kamran Ali Khan Niazi & Yongheng Yang & Mashood Nasir & Dezso Sera, 2019. "Evaluation of Interconnection Configuration Schemes for PV Modules with Switched-Inductor Converters under Partial Shading Conditions," Energies, MDPI, vol. 12(14), pages 1-12, July.
    7. Ramli, Mohd Zulkifli & Salam, Zainal, 2019. "Performance evaluation of dc power optimizer (DCPO) for photovoltaic (PV) system during partial shading," Renewable Energy, Elsevier, vol. 139(C), pages 1336-1354.
    8. Carlos Andres Ramos-Paja & Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez, 2018. "Sliding-Mode Control of Distributed Maximum Power Point Tracking Converters Featuring Overvoltage Protection," Energies, MDPI, vol. 11(9), pages 1-40, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:76:y:2017:i:c:p:516-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.