IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v74y2017icp949-958.html
   My bibliography  Save this article

Fault location and detection techniques in power distribution systems with distributed generation: A review

Author

Listed:
  • Gururajapathy, S.S.
  • Mokhlis, H.
  • Illias, H.A.

Abstract

Distribution systems are continuously exposed to fault occurrences due to various reasons, such as lightning strike, failure of power system components due to aging of equipment and human errors. These phenomena affect the system reliability and results in expensive repairs, lost of productivity and power loss to customers. Since fault is unpredictable, a fast fault location and isolation is required to minimize the impact of fault in distribution systems. Therefore, many methods have been developed since the past to locate and detect faults in distribution systems with distributed generation. The methods can be divided into two categories, conventional and artificial intelligence techniques. Conventional techniques include travelling wave method and impedance based method while artificial intelligence techniques include Artificial Neural Network (ANN), Support Vector Machine (SVM), Fuzzy Logic, Genetic Algorithm (GA) and matching approach. However, fault location using intelligent methods are challenging since they require training data for processing and are time consuming. In this paper, most of the techniques that have been developed since the past and commonly used to locate and detect faults in distribution systems with distributed generation are reviewed. Research works in fault location area, the working principles, advantages and disadvantages of past works related to each fault location technique are highlighted in this paper. Hence, from this review, the opportunities in fault location research area in power distribution system can be explored further.

Suggested Citation

  • Gururajapathy, S.S. & Mokhlis, H. & Illias, H.A., 2017. "Fault location and detection techniques in power distribution systems with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 949-958.
  • Handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:949-958
    DOI: 10.1016/j.rser.2017.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117303386
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Jiménez-Aparicio & Matthew J. Reno & Felipe Wilches-Bernal, 2022. "Traveling Wave Energy Analysis of Faults on Power Distribution Systems," Energies, MDPI, vol. 15(8), pages 1-28, April.
    2. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi & Nikta Chireh, 2019. "A Fast Fault Identification in a Grid-Connected Photovoltaic System Using Wavelet Multi-Resolution Singular Spectrum Entropy and Support Vector Machine," Energies, MDPI, vol. 12(13), pages 1-18, June.
    3. Jinrui Tang & Binyu Xiong & Chen Yang & Cuilan Tang & Yang Li & Guoxing Su & Xinhao Bian, 2019. "Development of an Integrated Power Distribution System Laboratory Platform Using Modular Miniature Physical Elements: A Case Study of Fault Location," Energies, MDPI, vol. 12(19), pages 1-19, October.
    4. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    5. Saeid Khavari & Rahman Dashti & Hamid Reza Shaker & Athila Santos, 2020. "High Impedance Fault Detection and Location in Combined Overhead Line and Underground Cable Distribution Networks Equipped with Data Loggers," Energies, MDPI, vol. 13(9), pages 1-15, May.
    6. Jia, Ke & Gu, Chenjie & Li, Lun & Xuan, Zhengwen & Bi, Tianshu & Thomas, David, 2018. "Sparse voltage amplitude measurement based fault location in large-scale photovoltaic power plants," Applied Energy, Elsevier, vol. 211(C), pages 568-581.
    7. Jun Yin Lee & Renuga Verayiah & Kam Hoe Ong & Agileswari K. Ramasamy & Marayati Binti Marsadek, 2020. "Distributed Generation: A Review on Current Energy Status, Grid-Interconnected PQ Issues, and Implementation Constraints of DG in Malaysia," Energies, MDPI, vol. 13(24), pages 1-40, December.
    8. Pascal Hategekimana & Adria Junyent Ferre & Joan Marc Rodriguez Bernuz & Etienne Ntagwirumugara, 2022. "Fault Detecting and Isolating Schemes in a Low-Voltage DC Microgrid Network from a Remote Village," Energies, MDPI, vol. 15(12), pages 1-16, June.
    9. Zhidi Lin & Dongliang Duan & Qi Yang & Xuemin Hong & Xiang Cheng & Liuqing Yang & Shuguang Cui, 2020. "Data-Driven Fault Localization in Distribution Systems with Distributed Energy Resources," Energies, MDPI, vol. 13(1), pages 1-16, January.
    10. Tang, Liangyu & Han, Yang & Zalhaf, Amr S. & Zhou, Siyu & Yang, Ping & Wang, Congling & Huang, Tao, 2024. "Resilience enhancement of active distribution networks under extreme disaster scenarios: A comprehensive overview of fault location strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    11. Moamin A. Mahmoud & Naziffa Raha Md Nasir & Mathuri Gurunathan & Preveena Raj & Salama A. Mostafa, 2021. "The Current State of the Art in Research on Predictive Maintenance in Smart Grid Distribution Network: Fault’s Types, Causes, and Prediction Methods—A Systematic Review," Energies, MDPI, vol. 14(16), pages 1-27, August.
    12. Hernandez-Matheus, Alejandro & Löschenbrand, Markus & Berg, Kjersti & Fuchs, Ida & Aragüés-Peñalba, Mònica & Bullich-Massagué, Eduard & Sumper, Andreas, 2022. "A systematic review of machine learning techniques related to local energy communities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    13. Saidatul Habsah Asman & Nur Fadilah Ab Aziz & Ungku Anisa Ungku Amirulddin & Mohd Zainal Abidin Ab Kadir, 2021. "Transient Fault Detection and Location in Power Distribution Network: A Review of Current Practices and Challenges in Malaysia," Energies, MDPI, vol. 14(11), pages 1-37, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:74:y:2017:i:c:p:949-958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.