IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v63y2016icp152-157.html
   My bibliography  Save this article

Overall review of China׳s thermal power development with emphatic analysis on thermal powers’ cost and benefit

Author

Listed:
  • Ming, Zeng
  • Xiaohu, Zhang
  • Ping, Zhang
  • Jun, Dong

Abstract

China׳s thermal power industry is now facing some new challenges. The slowing down of the macro economy, the surplus added capacity, low generating hours and the cut of feed-in tariff has now made the decision maker of both government and thermal power enterprises look back and rethink the future development of the whole thermal power industry. In this paper, we give an overall review of China׳s thermal power development based on industry data of the year 2014 and first half year of 2015, followed by a description of the 2015 feed-in tariff adjustment. The feed-in tariff averagely decreased by 0.02Yuan/kWh, subjecting the thermal power enterprises to great income losses. To give a micro review of how the thermal power perform under such circumstances, we also make an emphatic analysis based on the investigated data of six representative thermal power plants. We can see that the unit benefit varied in the range of 0.03–0.08Yuan/kWh, and this indicator may be even lower in 2015 as the adjustment of feed-in tariff. At the end, we also give some suggestions both for the government and the thermal power entities.

Suggested Citation

  • Ming, Zeng & Xiaohu, Zhang & Ping, Zhang & Jun, Dong, 2016. "Overall review of China׳s thermal power development with emphatic analysis on thermal powers’ cost and benefit," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 152-157.
  • Handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:152-157
    DOI: 10.1016/j.rser.2016.05.057
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116301691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.05.057?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gu, Yujiong & Xu, Jing & Chen, Dongchao & Wang, Zhong & Li, Qianqian, 2016. "Overall review of peak shaving for coal-fired power units in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 723-731.
    2. Ding, Ning & Duan, Jinhui & Xue, Song & Zeng, Ming & Shen, Jianfei, 2015. "Overall review of peaking power in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 503-516.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Yaru & Ma, Tieju & Guo, Fei, 2018. "A multi-regional energy transport and structure model for China’s electricity system," Energy, Elsevier, vol. 161(C), pages 907-919.
    2. Ming, Zeng & Ping, Zhang & Shunkun, Yu & Hui, Liu, 2017. "Overall review of the overcapacity situation of China’s thermal power industry: Status quo, policy analysis and suggestions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 768-774.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    2. Cheng, Chuntian & Su, Chengguo & Wang, Peilin & Shen, Jianjian & Lu, Jianyu & Wu, Xinyu, 2018. "An MILP-based model for short-term peak shaving operation of pumped-storage hydropower plants serving multiple power grids," Energy, Elsevier, vol. 163(C), pages 722-733.
    3. Yuan, Wenlin & Xin, Wenpeng & Su, Chengguo & Cheng, Chuntian & Yan, Denghua & Wu, Zening, 2022. "Cross-regional integrated transmission of wind power and pumped-storage hydropower considering the peak shaving demands of multiple power grids," Renewable Energy, Elsevier, vol. 190(C), pages 1112-1126.
    4. Wang, Peilin & Yuan, Wenlin & Su, Chengguo & Wu, Yang & Lu, Lu & Yan, Denghua & Wu, Zening, 2022. "Short-term optimal scheduling of cascade hydropower plants shaving peak load for multiple power grids," Renewable Energy, Elsevier, vol. 184(C), pages 68-79.
    5. Rui Cao & Jianjian Shen & Chuntian Cheng & Jian Wang, 2020. "Optimization Model for the Long-Term Operation of an Interprovincial Hydropower Plant Incorporating Peak Shaving Demands," Energies, MDPI, vol. 13(18), pages 1-21, September.
    6. Feng, Zhong-kai & Niu, Wen-jing & Wang, Wen-chuan & Zhou, Jian-zhong & Cheng, Chun-tian, 2019. "A mixed integer linear programming model for unit commitment of thermal plants with peak shaving operation aspect in regional power grid lack of flexible hydropower energy," Energy, Elsevier, vol. 175(C), pages 618-629.
    7. Loris Di Natale & Luca Funk & Martin Rüdisüli & Bratislav Svetozarevic & Giacomo Pareschi & Philipp Heer & Giovanni Sansavini, 2021. "The Potential of Vehicle-to-Grid to Support the Energy Transition: A Case Study on Switzerland," Energies, MDPI, vol. 14(16), pages 1-24, August.
    8. Yang, Jingze & Chi, Hetian & Cheng, Mohan & Dong, Mingqi & Li, Siwu & Yao, Hong, 2023. "Performance analysis of hydrogen supply using curtailed power from a solar-wind-storage power system," Renewable Energy, Elsevier, vol. 212(C), pages 1005-1019.
    9. Ma, Ziming & Zhong, Haiwang & Xia, Qing & Kang, Chongqing & Jin, Liming, 2020. "Constraint relaxation-based day-ahead market mechanism design to promote the renewable energy accommodation," Energy, Elsevier, vol. 198(C).
    10. Maheshwari, Mayank & Singh, Onkar, 2020. "Thermo-economic analysis of combined cycle configurations with intercooling and reheating," Energy, Elsevier, vol. 205(C).
    11. Ting Zhang & Shuaishuai Cao & Lingying Pan & Chenyu Zhou, 2020. "A Policy Effect Analysis of China’s Energy Storage Development Based on a Multi-Agent Evolutionary Game Model," Energies, MDPI, vol. 13(23), pages 1-35, November.
    12. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    13. Su, Chengguo & Cheng, Chuntian & Wang, Peilin & Shen, Jianjian & Wu, Xinyu, 2019. "Optimization model for long-distance integrated transmission of wind farms and pumped-storage hydropower plants," Applied Energy, Elsevier, vol. 242(C), pages 285-293.
    14. Yuan, Wenlin & Wang, Xinqi & Su, Chengguo & Cheng, Chuntian & Liu, Zhe & Wu, Zening, 2021. "Stochastic optimization model for the short-term joint operation of photovoltaic power and hydropower plants based on chance-constrained programming," Energy, Elsevier, vol. 222(C).
    15. Hong, Feng & Wang, Rui & Song, Jie & Gao, Mingming & Liu, Jizhen & Long, Dongteng, 2022. "A performance evaluation framework for deep peak shaving of the CFB boiler unit based on the DBN-LSSVM algorithm," Energy, Elsevier, vol. 238(PA).
    16. Zhang, Youjun & Hao, Junhong & Ge, Zhihua & Zhang, Fuxiang & Du, Xiaoze, 2021. "Optimal clean heating mode of the integrated electricity and heat energy system considering the comprehensive energy-carbon price," Energy, Elsevier, vol. 231(C).
    17. Ming, Zeng & Ping, Zhang & Shunkun, Yu & Hui, Liu, 2017. "Overall review of the overcapacity situation of China’s thermal power industry: Status quo, policy analysis and suggestions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 768-774.
    18. Geng, Xinmin & Zhou, Ye & Zhao, Weiqiang & Shi, Li & Chen, Diyi & Bi, Xiaojian & Xu, Beibei, 2024. "Pricing ancillary service of a Francis hydroelectric generating system to promote renewable energy integration in a clean energy base: Tariff compensation of deep peak regulation," Renewable Energy, Elsevier, vol. 226(C).
    19. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    20. Ding, Jie & Xu, Yujie & Chen, Haisheng & Sun, Wenwen & Hu, Shan & Sun, Shuang, 2019. "Value and economic estimation model for grid-scale energy storage in monopoly power markets," Applied Energy, Elsevier, vol. 240(C), pages 986-1002.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:152-157. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.