IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v55y2016icp668-673.html
   My bibliography  Save this article

Energy and cost analyses of kombucha beverage production

Author

Listed:
  • Mohammadshirazi, Ahmad
  • Bagheri Kalhor, Elnaz

Abstract

Kombucha is a traditional fermented beverage and it is produced by the fermentation of tea and sugar. Many beneficial effects to the human body can be achieved using substances with antioxidative properties. Substrates for kombucha fermentation contain antioxidants which originated from tea leaves. This study is conducted by kombucha beverage production device that has been invented by authors, located in the Tehran province, Iran. Data is collected from a kombucha beverage production device, performed by 23 replications in capacity of 4.5L during January–December 2014. Total energy inputs and outputs were calculated as 2.77MJL−1 and 8.69MJL−1, respectively, therefore the energy productivity and net energy value are estimated as 0.38kgMJ−1 and 5.92MJL−1, respectively. The results show that the highest share of energy is consumed by sugar (40.9%) and kombucha beverage (29%). The ratio of energy outputs to energy inputs is approximately 3.14. The shares of renewable and direct energy were 15.7% and 91.5%, respectively from the total energy input. The net return and productivity from kombucha beverage production were found to be 0.38$L−1 and 1.03kg$−1, respectively. The results showed that by increasing volume of kombucha beverage production device, input costs (kombucha fungus, electricity, machinery and rent land expense) will decrease because of proration costs.

Suggested Citation

  • Mohammadshirazi, Ahmad & Bagheri Kalhor, Elnaz, 2016. "Energy and cost analyses of kombucha beverage production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 668-673.
  • Handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:668-673
    DOI: 10.1016/j.rser.2015.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115012745
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohammadshirazi, Ahmad & Akram, Asadolah & Rafiee, Shahin & Mousavi Avval, Seyyed Hashem & Bagheri Kalhor, Elnaz, 2012. "An analysis of energy use and relation between energy inputs and yield in tangerine production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4515-4521.
    2. Heidari, M.D. & Omid, M., 2011. "Energy use patterns and econometric models of major greenhouse vegetable productions in Iran," Energy, Elsevier, vol. 36(1), pages 220-225.
    3. Mohammadi, Ali & Omid, Mahmoud, 2010. "Economical analysis and relation between energy inputs and yield of greenhouse cucumber production in Iran," Applied Energy, Elsevier, vol. 87(1), pages 191-196, January.
    4. Rajaeifar, Mohammad Ali & Akram, Asadolah & Ghobadian, Barat & Rafiee, Shahin & Heidari, Mohammad Davoud, 2014. "Energy-economic life cycle assessment (LCA) and greenhouse gas emissions analysis of olive oil production in Iran," Energy, Elsevier, vol. 66(C), pages 139-149.
    5. Thankappan, Samarthia & Midmore, Peter & Jenkins, Tim, 2006. "Conserving energy in smallholder agriculture: A multi-objective programming case-study of northwest India," Ecological Economics, Elsevier, vol. 56(2), pages 190-208, February.
    6. Samavatean, Naeimeh & Rafiee, Shahin & Mobli, Hossein & Mohammadi, Ali, 2011. "An analysis of energy use and relation between energy inputs and yield, costs and income of garlic production in Iran," Renewable Energy, Elsevier, vol. 36(6), pages 1808-1813.
    7. Erdal, Gülistan & Esengün, Kemal & Erdal, Hilmi & Gündüz, Orhan, 2007. "Energy use and economical analysis of sugar beet production in Tokat province of Turkey," Energy, Elsevier, vol. 32(1), pages 35-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikkhah, Amin & Royan, Mahsa & Khojastehpour, Mehdi & Bacenetti, Jacopo, 2017. "Environmental impacts modeling of Iranian peach production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 677-682.
    2. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hemmati, Abolfazl & Tabatabaeefar, Ahmad & Rajabipour, Ali, 2013. "Comparison of energy flow and economic performance between flat land and sloping land olive orchards," Energy, Elsevier, vol. 61(C), pages 472-478.
    2. Ghatrehsamani, Shirin & Ebrahimi, Rahim & Kazi, Salim Newaz & Badarudin Badry, Ahmad & Sadeghinezhad, Emad, 2016. "Optimization model of peach production relevant to input energies – Yield function in Chaharmahal va Bakhtiari province, Iran," Energy, Elsevier, vol. 99(C), pages 315-321.
    3. Barut, Zeliha Bereket & Ertekin, Can & Karaagac, Hasan Ali, 2011. "Tillage effects on energy use for corn silage in Mediterranean Coastal of Turkey," Energy, Elsevier, vol. 36(9), pages 5466-5475.
    4. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    5. Khoshnevisan, Benyamin & Rafiee, Shahin & Omid, Mahmoud & Yousefi, Marziye & Movahedi, Mehran, 2013. "Modeling of energy consumption and GHG (greenhouse gas) emissions in wheat production in Esfahan province of Iran using artificial neural networks," Energy, Elsevier, vol. 52(C), pages 333-338.
    6. Kuswardhani, Nita & Soni, Peeyush & Shivakoti, Ganesh P., 2013. "Comparative energy input–output and financial analyses of greenhouse and open field vegetables production in West Java, Indonesia," Energy, Elsevier, vol. 53(C), pages 83-92.
    7. Elsoragaby, Suha & Yahya, Azmi & Mahadi, Muhammad Razif & Nawi, Nazmi Mat & Mairghany, Modather, 2019. "Energy utilization in major crop cultivation," Energy, Elsevier, vol. 173(C), pages 1285-1303.
    8. Torki-Harchegani, Mehdi & Ebrahimi, Rahim & Mahmoodi-Eshkaftaki, Mahmood, 2015. "Almond production in Iran: An analysis of energy use efficiency (2008–2011)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 217-224.
    9. Sadeghi, Seyed Hamidreza & Sharifi Moghadam, Ehsan & Delavar, Majid & Zarghami, Mahdi, 2020. "Application of water-energy-food nexus approach for designating optimal agricultural management pattern at a watershed scale," Agricultural Water Management, Elsevier, vol. 233(C).
    10. Jónsson, Jón Örvar G. & Davíðsdóttir, Brynhildur & Nikolaidis, Nikolaos P. & Giannakis, Georgios V., 2019. "Tools for Sustainable Soil Management: Soil Ecosystem Services, EROI and Economic Analysis," Ecological Economics, Elsevier, vol. 157(C), pages 109-119.
    11. Bojacá, Carlos Ricardo & Casilimas, Héctor Albeiro & Gil, Rodrigo & Schrevens, Eddie, 2012. "Extending the input–output energy balance methodology in agriculture through cluster analysis," Energy, Elsevier, vol. 47(1), pages 465-470.
    12. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2012. "Energy input–output analysis and application of artificial neural networks for predicting greenhouse basil production," Energy, Elsevier, vol. 37(1), pages 171-176.
    13. Jamali, Mohsen & Soufizadeh, Saeid & Yeganeh, Bijan & Emam, Yahya, 2021. "A comparative study of irrigation techniques for energy flow and greenhouse gas (GHG) emissions in wheat agroecosystems under contrasting environments in south of Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Asgharipour, Mohammad Reza & Mondani, Farzad & Riahinia, Shahram, 2012. "Energy use efficiency and economic analysis of sugar beet production system in Iran: A case study in Khorasan Razavi province," Energy, Elsevier, vol. 44(1), pages 1078-1084.
    15. Mohammadshirazi, Ahmad & Akram, Asadolah & Rafiee, Shahin & Mousavi Avval, Seyyed Hashem & Bagheri Kalhor, Elnaz, 2012. "An analysis of energy use and relation between energy inputs and yield in tangerine production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4515-4521.
    16. Elhami, Behzad & Nejad Raini, Mahmoud Ghasemi & Taki, Morteza & Marzban, Afshin & Heidarisoltanabadi, Mohsen, 2021. "Analysis and comparison of energy-economic-environmental cycle in two cultivation methods (seeding and transplanting) for onion production (case study: central parts of Iran)," Renewable Energy, Elsevier, vol. 178(C), pages 875-890.
    17. Pahlavan, Reza & Omid, Mahmoud & Akram, Asadollah, 2011. "Energy use efficiency in greenhouse tomato production in Iran," Energy, Elsevier, vol. 36(12), pages 6714-6719.
    18. Özgöz, Engin & Altuntaş, Ebubekir & Asiltürk, Murat, 2017. "Effects of soil tillage on energy use in potato farming in Central Anatolia of Turkey," Energy, Elsevier, vol. 141(C), pages 1517-1523.
    19. Sara Ilahi & Yongchang Wu & Muhammad Ahsan Ali Raza & Wenshan Wei & Muhammad Imran & Lyankhua Bayasgalankhuu, 2019. "Optimization Approach for Improving Energy Efficiency and Evaluation of Greenhouse Gas Emission of Wheat Crop using Data Envelopment Analysis," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    20. Tabatabaie, Seyed Mohammad Hossein & Rafiee, Shahin & Keyhani, Alireza & Heidari, Mohammad Davoud, 2013. "Energy use pattern and sensitivity analysis of energy inputs and input costs for pear production in Iran," Renewable Energy, Elsevier, vol. 51(C), pages 7-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:55:y:2016:i:c:p:668-673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.