IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v54y2016icp1389-1400.html
   My bibliography  Save this article

Wind energy assessment considering wind speed correlation in Malaysia

Author

Listed:
  • Goh, H.H.
  • Lee, S.W.
  • Chua, Q.S.
  • Goh, K.C.
  • Teo, K.T.K.

Abstract

Renewable energy is the current trend of energy sourcing. Numerous scientists, inventors, and engineers are working hard to harness renewable energy. The application of renewable energy is very wide; it can be as small as lighting an LED bulb or as large as generating the electricity of a town or even a country. Wind energy plays an important role in the context of electricity generation. Wind energy is highly dependent on the wind speed at a wind site. Wind prediction is necessary for a wind energy assessment of a potential wind farm. In this study, the wind energy assessment is based on wind prediction using the Mycielski algorithm and K-means clustering in Kudat, Malaysia. The predicted results are analysed using Weibull analysis to obtain the most probable wind speed. From the results of this study, K-means clustering is more accurate in prediction when compared with the Mycielski algorithm. The most probable wind in Kudat is sufficient to operate the wind turbines.

Suggested Citation

  • Goh, H.H. & Lee, S.W. & Chua, Q.S. & Goh, K.C. & Teo, K.T.K., 2016. "Wind energy assessment considering wind speed correlation in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1389-1400.
  • Handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1389-1400
    DOI: 10.1016/j.rser.2015.10.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115011557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.10.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sopian, K. & Othman, M.Y.Hj. & Wirsat, A., 1995. "The wind energy potential of Malaysia," Renewable Energy, Elsevier, vol. 6(8), pages 1005-1016.
    2. Çapik, Mehmet & Yılmaz, Ali Osman & Çavuşoğlu, İbrahim, 2012. "Present situation and potential role of renewable energy in Turkey," Renewable Energy, Elsevier, vol. 46(C), pages 1-13.
    3. Thomas Hammons (ed.), 2009. "Renewable Energy," Books, IntechOpen, number 657, January-J.
    4. Kusiak, Andrew & Li, Wenyan, 2010. "Short-term prediction of wind power with a clustering approach," Renewable Energy, Elsevier, vol. 35(10), pages 2362-2369.
    5. Carta, J.A. & Ramírez, P., 2007. "Analysis of two-component mixture Weibull statistics for estimation of wind speed distributions," Renewable Energy, Elsevier, vol. 32(3), pages 518-531.
    6. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    7. Xingang, Zhao & Zhongfu, Tan & Pingkuo, Liu, 2013. "Development goal of 30GW for China’s biomass power generation: Will it be achieved?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 310-317.
    8. Safari, Bonfils & Gasore, Jimmy, 2010. "A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda," Renewable Energy, Elsevier, vol. 35(12), pages 2874-2880.
    9. Li, Jiaming & Guo, Ying & Platt, Glenn & Ward, John K., 2013. "Renewable energy aggregation with intelligent battery controller," Renewable Energy, Elsevier, vol. 59(C), pages 220-228.
    10. Jennings, Philip, 2009. "New directions in renewable energy education," Renewable Energy, Elsevier, vol. 34(2), pages 435-439.
    11. Bivona, S. & Burlon, R. & Leone, C., 2003. "Hourly wind speed analysis in Sicily," Renewable Energy, Elsevier, vol. 28(9), pages 1371-1385.
    12. Touw, Anduin E., 2009. "Bayesian estimation of mixed Weibull distributions," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 463-473.
    13. Pao, Hsiao-Tien & Fu, Hsin-Chia, 2013. "Renewable energy, non-renewable energy and economic growth in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 381-392.
    14. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    15. Martin, Nigel J. & Rice, John L., 2012. "Developing renewable energy supply in Queensland, Australia: A study of the barriers, targets, policies and actions," Renewable Energy, Elsevier, vol. 44(C), pages 119-127.
    16. Touré, Siaka, 2005. "Investigations on the Eigen‐coordinates method for the 2‐parameter weibull distribution of wind speed," Renewable Energy, Elsevier, vol. 30(4), pages 511-521.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bahrami, Arian & Teimourian, Amir & Okoye, Chiemeka Onyeka & Khosravi, Nima, 2019. "Assessing the feasibility of wind energy as a power source in Turkmenistan; a major opportunity for Central Asia's energy market," Energy, Elsevier, vol. 183(C), pages 415-427.
    2. Dragomir, George & Șerban, Alexandru & Năstase, Gabriel & Brezeanu, Alin Ionuț, 2016. "Wind energy in Romania: A review from 2009 to 2016," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 129-143.
    3. Hu, Qinghua & Wang, Yun & Xie, Zongxia & Zhu, Pengfei & Yu, Daren, 2016. "On estimating uncertainty of wind energy with mixture of distributions," Energy, Elsevier, vol. 112(C), pages 935-962.
    4. Razmi, Amir Reza & Soltani, M. & Ardehali, Armin & Gharali, Kobra & Dusseault, M.B. & Nathwani, Jatin, 2021. "Design, thermodynamic, and wind assessments of a compressed air energy storage (CAES) integrated with two adjacent wind farms: A case study at Abhar and Kahak sites, Iran," Energy, Elsevier, vol. 221(C).
    5. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    6. Rivera-Lugo, Yazmín Y. & Salazar-Gastélum, Moisés I. & López-Rosas, Deisly M. & Reynoso-Soto, Edgar A. & Pérez-Sicairos, Sergio & Velraj, Samgopiraj & Flores-Hernández, José R. & Félix-Navarro, Rosa M, 2018. "Effect of template, reaction time and platinum concentration in the synthesis of PtCu/CNT catalyst for PEMFC applications," Energy, Elsevier, vol. 148(C), pages 561-570.
    7. Firouzmakan, Pouya & Hooshmand, Rahmat-Allah & Bornapour, Mosayeb & Khodabakhshian, Amin, 2019. "A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 355-368.
    8. Konstantinos, Ioannou & Georgios, Tsantopoulos & Garyfalos, Arabatzis, 2019. "A Decision Support System methodology for selecting wind farm installation locations using AHP and TOPSIS: Case study in Eastern Macedonia and Thrace region, Greece," Energy Policy, Elsevier, vol. 132(C), pages 232-246.
    9. Chidean, Mihaela I. & Caamaño, Antonio J. & Ramiro-Bargueño, Julio & Casanova-Mateo, Carlos & Salcedo-Sanz, Sancho, 2018. "Spatio-temporal analysis of wind resource in the Iberian Peninsula with data-coupled clustering," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2684-2694.
    10. Yang, Yang & Lang, Jin & Wu, Jian & Zhang, Yanyan & Su, Lijie & Song, Xiangman, 2022. "Wind speed forecasting with correlation network pruning and augmentation: A two-phase deep learning method," Renewable Energy, Elsevier, vol. 198(C), pages 267-282.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Carta, J.A. & Ramírez, P. & Velázquez, S., 2009. "A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 933-955, June.
    2. Früh, Wolf-Gerrit, 2013. "Long-term wind resource and uncertainty estimation using wind records from Scotland as example," Renewable Energy, Elsevier, vol. 50(C), pages 1014-1026.
    3. Jiang, Haiyan & Wang, Jianzhou & Wu, Jie & Geng, Wei, 2017. "Comparison of numerical methods and metaheuristic optimization algorithms for estimating parameters for wind energy potential assessment in low wind regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1199-1217.
    4. Basir Khan, M. Reyasudin & Jidin, Razali & Pasupuleti, Jagadeesh & Shaaya, Sharifah Azwa, 2015. "Optimal combination of solar, wind, micro-hydro and diesel systems based on actual seasonal load profiles for a resort island in the South China Sea," Energy, Elsevier, vol. 82(C), pages 80-97.
    5. Nor, Khalid Mohamed & Shaaban, Mohamed & Abdul Rahman, Hasimah, 2014. "Feasibility assessment of wind energy resources in Malaysia based on NWP models," Renewable Energy, Elsevier, vol. 62(C), pages 147-154.
    6. Amr Khaled Khamees & Almoataz Y. Abdelaziz & Makram R. Eskaros & Mahmoud A. Attia & Mariam A. Sameh, 2022. "Optimal Power Flow with Stochastic Renewable Energy Using Three Mixture Component Distribution Functions," Sustainability, MDPI, vol. 15(1), pages 1-21, December.
    7. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    8. Arslan, Talha & Bulut, Y. Murat & Altın Yavuz, Arzu, 2014. "Comparative study of numerical methods for determining Weibull parameters for wind energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 820-825.
    9. Abul Kalam Azad & Mohammad Golam Rasul & Talal Yusaf, 2014. "Statistical Diagnosis of the Best Weibull Methods for Wind Power Assessment for Agricultural Applications," Energies, MDPI, vol. 7(5), pages 1-30, May.
    10. Altunkaynak, Abdüsselam & Erdik, Tarkan & Dabanlı, İsmail & Şen, Zekai, 2012. "Theoretical derivation of wind power probability distribution function and applications," Applied Energy, Elsevier, vol. 92(C), pages 809-814.
    11. Lepore, Antonio & Palumbo, Biagio & Pievatolo, Antonio, 2020. "A Bayesian approach for site-specific wind rose prediction," Renewable Energy, Elsevier, vol. 150(C), pages 691-702.
    12. Hamdan, A. & Mustapha, F. & Ahmad, K.A. & Mohd Rafie, A.S., 2014. "A review on the micro energy harvester in Structural Health Monitoring (SHM) of biocomposite material for Vertical Axis Wind Turbine (VAWT) system: A Malaysia perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 23-30.
    13. Jung, Christopher & Schindler, Dirk, 2019. "Wind speed distribution selection – A review of recent development and progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    14. Sergei Kolesnik & Yossi Rabinovitz & Michael Byalsky & Asher Yahalom & Alon Kuperman, 2023. "Assessment of Wind Speed Statistics in Samaria Region and Potential Energy Production," Energies, MDPI, vol. 16(9), pages 1-35, May.
    15. Borhanazad, H. & Mekhilef, S. & Saidur, R. & Boroumandjazi, G., 2013. "Potential application of renewable energy for rural electrification in Malaysia," Renewable Energy, Elsevier, vol. 59(C), pages 210-219.
    16. Kostevšek, Anja & Cizelj, Leon & Petek, Janez & Pivec, Aleksandra, 2013. "A novel concept for a renewable network within municipal energy systems," Renewable Energy, Elsevier, vol. 60(C), pages 79-87.
    17. Masseran, Nurulkamal, 2015. "Evaluating wind power density models and their statistical properties," Energy, Elsevier, vol. 84(C), pages 533-541.
    18. Shin, Ju-Young & Ouarda, Taha B.M.J. & Lee, Taesam, 2016. "Heterogeneous mixture distributions for modeling wind speed, application to the UAE," Renewable Energy, Elsevier, vol. 91(C), pages 40-52.
    19. Muhammad Fitra Zambak & Catra Indra Cahyadi & Jufri Helmi & Tengku Machdhalie Sofie & Suwarno Suwarno, 2023. "Evaluation and Analysis of Wind Speed with the Weibull and Rayleigh Distribution Models for Energy Potential Using Three Models," International Journal of Energy Economics and Policy, Econjournals, vol. 13(2), pages 427-432, March.
    20. Cabello, M. & Orza, J.A.G., 2010. "Wind speed analysis in the province of Alicante, Spain. Potential for small-scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3185-3191, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:54:y:2016:i:c:p:1389-1400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.