IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v52y2015icp1539-1558.html
   My bibliography  Save this article

Recent developments in microbial enhanced oil recovery

Author

Listed:
  • Patel, Jay
  • Borgohain, Subrata
  • Kumar, Mayank
  • Rangarajan, Vivek
  • Somasundaran, Ponisseril
  • Sen, Ramkrishna

Abstract

The world continues to rely heavily on petroleum as a primary energy source. However, a great fraction of the oil-in-place remains inaccessible to traditional recovery means. This review presents an update on the use of biotechnology to improve residual crude oil production from oil wells as a tertiary oil recovery method known as “microbial enhanced oil recovery” (MEOR). Our focus has been to critically discuss and analyze the recent research trends in this field, with special attention devoted to separately assessing both laboratory and field cases to better demonstrate the progress being made across different MEOR techniques. MEOR strategies reviewed here include the uses of selective plugging, biopolymers, wettability alterations, bioacids, biosolvents, and biosurfactants. Additionally, the emerging contributions of genetically-engineered microorganisms for MEOR purposes (GEMEOR) and enzyme-enhanced oil recovery (EEOR) are also analyzed. While further research must still be done to optimize MEOR methods for the oil industry, biotechnology-based methods hold much promise for oil recovery operations as well as for oil spill remediation.

Suggested Citation

  • Patel, Jay & Borgohain, Subrata & Kumar, Mayank & Rangarajan, Vivek & Somasundaran, Ponisseril & Sen, Ramkrishna, 2015. "Recent developments in microbial enhanced oil recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1539-1558.
  • Handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1539-1558
    DOI: 10.1016/j.rser.2015.07.135
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115007820
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.07.135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sayed Ameenuddin Irfan & Afza Shafie & Noorhana Yahya & Nooraini Zainuddin, 2019. "Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review," Energies, MDPI, vol. 12(8), pages 1-19, April.
    2. Miu Ito & Yuichi Sugai, 2022. "Fundamental Investigation on a Foam-Generating Microorganism and Its Potential for Mobility Reduction in High-Permeability Flow Channels," Energies, MDPI, vol. 15(7), pages 1-14, March.
    3. Bai, Mingxing & Zhang, Zhichao & Cui, Xiaona & Song, Kaoping, 2017. "Studies of injection parameters for chemical flooding in carbonate reservoirs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1464-1471.
    4. Safdel, Milad & Anbaz, Mohammad Amin & Daryasafar, Amin & Jamialahmadi, Mohammad, 2017. "Microbial enhanced oil recovery, a critical review on worldwide implemented field trials in different countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 159-172.
    5. Eunji Hong & Moon Sik Jeong & Tae Hong Kim & Ji Ho Lee & Jin Hyung Cho & Kun Sang Lee, 2019. "Development of Coupled Biokinetic and Thermal Model to Optimize Cold-Water Microbial Enhanced Oil Recovery (MEOR) in Homogenous Reservoir," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    6. Moon Sik Jeong & Young Woo Lee & Hye Seung Lee & Kun Sang Lee, 2021. "Simulation-Based Optimization of Microbial Enhanced Oil Recovery with a Model Integrating Temperature, Pressure, and Salinity Effects," Energies, MDPI, vol. 14(4), pages 1-20, February.
    7. Marzuqa Quraishi & Shashi Kant Bhatia & Soumya Pandit & Piyush Kumar Gupta & Vivek Rangarajan & Dibyajit Lahiri & Sunita Varjani & Sanjeet Mehariya & Yung-Hun Yang, 2021. "Exploiting Microbes in the Petroleum Field: Analyzing the Credibility of Microbial Enhanced Oil Recovery (MEOR)," Energies, MDPI, vol. 14(15), pages 1-30, August.
    8. Xiaoluan Yu & Hua Li & Zhiyong Song & Weiyao Zhu, 2023. "Long-Term Pore-Scale Experiments on MEOR by Surfactant-Producing Microorganisms Reveal the Altering Dominant Mechanisms of Oil Recovery," Energies, MDPI, vol. 16(19), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:52:y:2015:i:c:p:1539-1558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.