IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp692-716.html
   My bibliography  Save this article

Hydrodynamics of offshore structures with specific focus on wind energy applications

Author

Listed:
  • Benitz, M.A.
  • Lackner, M.A.
  • Schmidt, D.P.

Abstract

This review covers the broad scope of ocean hydrodynamics on offshore marine structures, laying the framework for studying offshore wind energy with a variety of engineering methods. First, water wave theory is described beginning with the fundamental equations of fluid mechanics. A variety of wave theories are discussed, beginning with linearized wave theory, and continuing with Stokes, cnoidal and solitary wave theory. The regions of wave applicability for different theories are shown, summarizing the discussion of water wave theory. Following the introduction of water wave theory, ocean physics is introduced. This section includes ocean wave generation, random waves, spectral representation and commonly used wave spectra, including the Pierson–Moskowitz and JONSWAP spectra. Next, wave–body interaction is presented, first looking at static and then dynamic loads. The dynamic load discussion covers waves, added mass and impulse loads. The section on wave–body interaction concludes with a review of recent literature on wave–body interactions, with emphasis on offshore wind energy. Additionally, a sample of existing engineering tools for modeling hydrodynamics on offshore wind turbines is presented. Finally, finite volume methods are presented to lay the groundwork for reviewing recent computational fluid dynamics research relating to the wave–body interaction problem. The review culminates in a review of recent CFD research.

Suggested Citation

  • Benitz, M.A. & Lackner, M.A. & Schmidt, D.P., 2015. "Hydrodynamics of offshore structures with specific focus on wind energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 692-716.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:692-716
    DOI: 10.1016/j.rser.2015.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115000313
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    2. Hashim, Roslan & Roy, Chandrabhushan & Motamedi, Shervin & Shamshirband, Shahaboddin & Petković, Dalibor, 2016. "Selection of climatic parameters affecting wave height prediction using an enhanced Takagi-Sugeno-based fuzzy methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 246-257.
    3. Srikanth Bashetty & Selahattin Ozcelik, 2021. "Review on Dynamics of Offshore Floating Wind Turbine Platforms," Energies, MDPI, vol. 14(19), pages 1-30, September.
    4. Weeks, Kelly & Safa, Mahdi & Kenyon, George & Levius, Seon, 2020. "Offshore multi-purpose platform efficacy by U.S. coastal areas," Renewable Energy, Elsevier, vol. 152(C), pages 1451-1464.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Xu & Yan, Bowen & Zhou, Xuhong & Yang, Qingshan & Huang, Guoqing & Su, Yanwen & Yang, Wei & Jiang, Yan, 2024. "Wind resource assessment at mountainous wind farm: Fusion of RANS and vertical multi-point on-site measured wind field data," Applied Energy, Elsevier, vol. 363(C).
    2. Cheng-Dar Yue & Che-Chih Liu & Chien-Cheng Tu & Ta-Hui Lin, 2019. "Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources," Energies, MDPI, vol. 12(4), pages 1-24, February.
    3. Wang, Long & Wang, Tongguang & Wu, Jianghai & Chen, Guoping, 2017. "Multi-objective differential evolution optimization based on uniform decomposition for wind turbine blade design," Energy, Elsevier, vol. 120(C), pages 346-361.
    4. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    5. Li, Yi & Wu, Xiao-Peng & Li, Qiu-Sheng & Tee, Kong Fah, 2018. "Assessment of onshore wind energy potential under different geographical climate conditions in China," Energy, Elsevier, vol. 152(C), pages 498-511.
    6. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    7. Bendjebbas, H. & Abdellah-ElHadj, A. & Abbas, M., 2016. "Full-scale, wind tunnel and CFD analysis methods of wind loads on heliostats: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 452-472.
    8. Long Wang & Ran Han & Tongguang Wang & Shitang Ke, 2018. "Uniform Decomposition and Positive-Gradient Differential Evolution for Multi-Objective Design of Wind Turbine Blade," Energies, MDPI, vol. 11(5), pages 1-19, May.
    9. Siddiqui, M. Salman & Rasheed, Adil & Tabib, Mandar & Kvamsdal, Trond, 2019. "Numerical investigation of modeling frameworks and geometric approximations on NREL 5 MW wind turbine," Renewable Energy, Elsevier, vol. 132(C), pages 1058-1075.
    10. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    11. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:692-716. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.