IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp149-158.html
   My bibliography  Save this article

Energy analysis of the built environment—A review and outlook

Author

Listed:
  • Anderson, John E.
  • Wulfhorst, Gebhard
  • Lang, Werner

Abstract

The built environment is responsible for significant use of final energy (62%) and is a major source of greenhouse gas emissions (55%). Achieving environmental goals, including climate change mitigation, requires comprehensive methodologies to accurately assess the impacts from this sector. Research to date focuses on either individual buildings or on the urban level (e.g., metropolitan regions). Robust and accurate methodologies have been developed to quantify environmental impacts at both scales. While methodologies overlap between the building and urban levels, assessment remains largely confined within each scale. At the building level, research focuses on materials, architectural design, operational systems, structural systems, construction, and analysis methods. At the urban scale, urban form, density, transportation, infrastructure, consumption, and analysis methods are the main research focuses. The paper presents the major findings at each scale. The work then argues for an expanded analysis framework to account for the interplay between the building and city level captured through a new impact category: induced impacts. This new framework is necessary to address actual patterns of construction (new buildings or retrofits within existing cities) and to quantify currently missing impacts. Based on the findings, a new methodology to capture induced impacts in the built environment is outlined. Finally, practical and policy implications are discussed. Inclusion of induced impacts is critical to achieve environmental objectives within the building sector and beyond.

Suggested Citation

  • Anderson, John E. & Wulfhorst, Gebhard & Lang, Werner, 2015. "Energy analysis of the built environment—A review and outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 149-158.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:149-158
    DOI: 10.1016/j.rser.2014.12.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211401079X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.12.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    3. Gaigné, Carl & Riou, Stéphane & Thisse, Jacques-François, 2012. "Are compact cities environmentally friendly?," Journal of Urban Economics, Elsevier, vol. 72(2), pages 123-136.
    4. Lee, Bumsoo & Gordon, Peter & Moore II, James E. & Richardson, Harry W., 2011. "The attributes of residence/workplace areas and transit commuting," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 4(3), pages 43-63.
    5. Manfred Lenzen & Greg M. Peters, 2010. "How City Dwellers Affect Their Resource Hinterland," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 73-90, January.
    6. Plappally, A.K. & Lienhard V, J.H., 2012. "Energy requirements for water production, treatment, end use, reclamation, and disposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4818-4848.
    7. Rai, Deepak & Sodagar, Behzad & Fieldson, Rosi & Hu, Xiao, 2011. "Assessment of CO2 emissions reduction in a distribution warehouse," Energy, Elsevier, vol. 36(4), pages 2271-2277.
    8. Cabeza, Luisa F. & Rincón, Lídia & Vilariño, Virginia & Pérez, Gabriel & Castell, Albert, 2014. "Life cycle assessment (LCA) and life cycle energy analysis (LCEA) of buildings and the building sector: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 394-416.
    9. Sharma, Aashish & Saxena, Abhishek & Sethi, Muneesh & Shree, Venu & Varun, 2011. "Life cycle assessment of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 871-875, January.
    10. Nahlik, Matthew J. & Chester, Mikhail V., 2014. "Transit-oriented smart growth can reduce life-cycle environmental impacts and household costs in Los Angeles," Transport Policy, Elsevier, vol. 35(C), pages 21-30.
    11. Antonio M. Bento & Maureen L. Cropper & Ahmed Mushfiq Mobarak & Katja Vinha, 2005. "The Effects of Urban Spatial Structure on Travel Demand in the United States," The Review of Economics and Statistics, MIT Press, vol. 87(3), pages 466-478, August.
    12. Iwaro, Joseph & Mwasha, Abrahams & Williams, Rupert G. & Zico, Ricardo, 2014. "An Integrated Criteria Weighting Framework for the sustainable performance assessment and design of building envelope," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 417-434.
    13. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    14. Weber, Christopher L. & Matthews, H. Scott, 2008. "Quantifying the global and distributional aspects of American household carbon footprint," Ecological Economics, Elsevier, vol. 66(2-3), pages 379-391, June.
    15. Shammin, Md. R. & Herendeen, Robert A. & Hanson, Michelle J. & Wilson, Eric J.H., 2010. "A multivariate analysis of the energy intensity of sprawl versus compact living in the U.S. for 2003," Ecological Economics, Elsevier, vol. 69(12), pages 2363-2373, October.
    16. Carl Gaigné & Stéphane Riou & Jacques-François Thisse, 2012. "Are Compact Cities Environmentally (and Socially) Desirable ?," Cahiers de recherche CREATE 2012-4, CREATE.
    17. Jihoon Min & Zeke Hausfather & Qi Feng Lin, 2010. "A High‐Resolution Statistical Model of Residential Energy End Use Characteristics for the United States," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 791-807, October.
    18. Bayoumi, Mohannad & Fink, Dietrich, 2014. "Maximizing the performance of an energy generating façade in terms of energy saving strategies," Renewable Energy, Elsevier, vol. 64(C), pages 294-305.
    19. Pacheco, R. & Ordóñez, J. & Martínez, G., 2012. "Energy efficient design of building: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3559-3573.
    20. Giovanni Baiocchi & Jan Minx & Klaus Hubacek, 2010. "The Impact of Social Factors and Consumer Behavior on Carbon Dioxide Emissions in the United Kingdom," Journal of Industrial Ecology, Yale University, vol. 14(1), pages 50-72, January.
    21. Crawford, R.H., 2009. "Life cycle energy and greenhouse emissions analysis of wind turbines and the effect of size on energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2653-2660, December.
    22. Stephan, André & Crawford, Robert H. & de Myttenaere, Kristel, 2013. "A comprehensive assessment of the life cycle energy demand of passive houses," Applied Energy, Elsevier, vol. 112(C), pages 23-34.
    23. Marcial Echenique & Anthony Hargreaves & Gordon Mitchell & Anil Namdeo, 2012. "Growing Cities Sustainably," Journal of the American Planning Association, Taylor & Francis Journals, vol. 78(2), pages 121-137.
    24. Heeren, Niko & Jakob, Martin & Martius, Gregor & Gross, Nadja & Wallbaum, Holger, 2013. "A component based bottom-up building stock model for comprehensive environmental impact assessment and target control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 45-56.
    25. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    26. Leontief, Wassily, 1970. "Environmental Repercussions and the Economic Structure: An Input-Output Approach," The Review of Economics and Statistics, MIT Press, vol. 52(3), pages 262-271, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poruschi, Lavinia & Ambrey, Christopher L., 2018. "Densification, what does it mean for fuel poverty and energy justice? An empirical analysis," Energy Policy, Elsevier, vol. 117(C), pages 208-217.
    2. Blaudin de Thé, Camille & Carantino, Benjamin & Lafourcade, Miren, 2021. "The carbon ‘carprint’ of urbanization: New evidence from French cities," Regional Science and Urban Economics, Elsevier, vol. 89(C).
    3. Age Poom & Rein Ahas, 2016. "How Does the Environmental Load of Household Consumption Depend on Residential Location?," Sustainability, MDPI, vol. 8(9), pages 1-18, August.
    4. Jiang, Yida & Long, Yin & Liu, Qiaoling & Dowaki, Kiyoshi & Ihara, Tomohiko, 2020. "Carbon emission quantification and decarbonization policy exploration for the household sector - Evidence from 51 Japanese cities," Energy Policy, Elsevier, vol. 140(C).
    5. Ala-Mantila, Sanna & Heinonen, Jukka & Junnila, Seppo, 2014. "Relationship between urbanization, direct and indirect greenhouse gas emissions, and expenditures: A multivariate analysis," Ecological Economics, Elsevier, vol. 104(C), pages 129-139.
    6. Wiedenhofer, Dominik & Lenzen, Manfred & Steinberger, Julia K., 2013. "Energy requirements of consumption: Urban form, climatic and socio-economic factors, rebounds and their policy implications," Energy Policy, Elsevier, vol. 63(C), pages 696-707.
    7. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    8. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    9. Corey Allan & Suzi Kerr & Campbell Will, 2015. "Are we turning a brighter shade of green? The relationship between household characteristics and greenhouse gas emissions from consumption in New Zealand," Working Papers 15_06, Motu Economic and Public Policy Research.
    10. Ma, Jun & Cheng, Jack C.P., 2016. "Estimation of the building energy use intensity in the urban scale by integrating GIS and big data technology," Applied Energy, Elsevier, vol. 183(C), pages 182-192.
    11. Kim, Jinwon, 2016. "Vehicle fuel-efficiency choices, emission externalities, and urban sprawl," Economics of Transportation, Elsevier, vol. 5(C), pages 24-36.
    12. Dixit, Manish K., 2017. "Life cycle embodied energy analysis of residential buildings: A review of literature to investigate embodied energy parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 390-413.
    13. Theodore Tsekeris, 2022. "Freight Transport Cost and Urban Sprawl across EU Regions," Sustainability, MDPI, vol. 14(9), pages 1-17, April.
    14. Fremstad, Anders & Underwood, Anthony & Zahran, Sammy, 2018. "The Environmental Impact of Sharing: Household and Urban Economies in CO2 Emissions," Ecological Economics, Elsevier, vol. 145(C), pages 137-147.
    15. Christian Hilber & Charles Palmer, 2014. "Urban development and air pollution: Evidence from a global panel of cities," GRI Working Papers 175, Grantham Research Institute on Climate Change and the Environment.
    16. Heidi Bruderer Enzler & Andreas Diekmann, 2015. "Environmental Impact and Pro-Environmental Behavior: Correlations to Income and Environmental Concern," ETH Zurich Sociology Working Papers 9, ETH Zurich, Chair of Sociology.
    17. Theine, Hendrik & Humer, Stefan & Moser, Mathias & Schnetzer, Matthias, 2022. "Emissions inequality: Disparities in income, expenditure, and the carbon footprint in Austria," Ecological Economics, Elsevier, vol. 197(C).
    18. Andreas Froemelt & René Buffat & Stefanie Hellweg, 2020. "Machine learning based modeling of households: A regionalized bottom‐up approach to investigate consumption‐induced environmental impacts," Journal of Industrial Ecology, Yale University, vol. 24(3), pages 639-652, June.
    19. Sanna Ala-Mantila & Jukka Heinonen & Seppo Junnila, 2013. "Greenhouse Gas Implications of Urban Sprawl in the Helsinki Metropolitan Area," Sustainability, MDPI, vol. 5(10), pages 1-18, October.
    20. Albert, Osei-Owusu Kwame & Marianne, Thomsen & Jonathan, Lindahl & Nino, Javakhishvili Larsen & Dario, Caro, 2020. "Tracking the carbon emissions of Denmark's five regions from a producer and consumer perspective," Ecological Economics, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:149-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.