IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v27y2013icp334-349.html
   My bibliography  Save this article

Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells

Author

Listed:
  • Maçaira, José
  • Andrade, Luísa
  • Mendes, Adélio

Abstract

This work reviews the state-of-the-art nanostructured photoelectrodes for use in dye-sensitized solar cells. The influence of the photoelectrode structure in the DSC performance is analyzed. The nanostructured photoelectrodes can be classified into: (1) nanoparticles with high surface areas for efficient dye loading; (2) 1D nanostructures such as nanotubes and nanowires that offer direct electron transport pathways towards the collecting substrate; (3) 3D hierarchically ordered photoelectrodes that combine large pores for efficient electrolyte diffusion, large particles for effective light scattering but also small particles needed to achieve high surface areas; (4) 3D template-based techniques that create highly conductive macroporous scaffolds to produce structures with different length scales for electrolyte diffusion (macro and mesopores) and dye loading (micro and nanopores); and finally (5) hybrid TiO2/graphene nanostructures able to suppress electron recombination in the semiconductor/electrolyte interface, increasing the electron mobility and extraction and also able to enhance light absorption, ultimately increasing the DSC performance.

Suggested Citation

  • Maçaira, José & Andrade, Luísa & Mendes, Adélio, 2013. "Review on nanostructured photoelectrodes for next generation dye-sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 334-349.
  • Handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:334-349
    DOI: 10.1016/j.rser.2013.07.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113004565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.07.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Wenjun & Li, Jing & Guo, Fuling & Zhang, Lei & Long, Yitao & Hua, Jianli, 2010. "Photovoltaic performance and long-term stability of quasi-solid-state fluoranthene dyes-sensitized solar cells," Renewable Energy, Elsevier, vol. 35(8), pages 1724-1728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, Amin & Roudgar-Amoli, Mostafa & Bonyad-Shekalgourabi, Seyed-Milad & Shariatinia, Zahra & Mahmoudi, Melika & Saadat, Fatemeh, 2022. "Dye sensitized solar cells go beyond using perovskite and spinel inorganic materials: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Shalini, S. & Balasundara prabhu, R. & Prasanna, S. & Mallick, Tapas K. & Senthilarasu, S., 2015. "Review on natural dye sensitized solar cells: Operation, materials and methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1306-1325.
    3. Mozaffari, Samaneh & Nateghi, Mohammad Reza & Zarandi, Mahmood Borhani, 2017. "An overview of the Challenges in the commercialization of dye sensitized solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 675-686.
    4. Hsiao, Po-Tsung & Hung, Wan-Tun & Chen, Yu-Cheng & Huang, Liang-Kun & Chang, Chih-Chou & Chen, Ching-Fu & Chen, Hao-Wei & Lu, Ming-De & Lin, Yu-Pin & Tung, Yung-Liang, 2020. "Pilot operation and lifetime assessment for indoor light energy harvesting photovoltaics," Renewable Energy, Elsevier, vol. 152(C), pages 67-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dehaudt, Jérémy & Husson, Jérôme & Guyard, Laurent & Oswald, Frédéric & Martineau, David, 2014. "A simple access to “Black-Dye” analogs with good efficiencies in dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 66(C), pages 588-595.
    2. Liang, Mao & Wang, Zhong-Yuan & Zhang, Lu & Han, Hong-Yu & Sun, Zhe & Xue, Song, 2011. "New organic photosensitizers incorporating carbazole and dimethylarylamine moieties for dye-sensitized solar cells," Renewable Energy, Elsevier, vol. 36(10), pages 2711-2716.
    3. Yasa, Mustafa & Depci, Tolga & Alemdar, Eda & Hacioglu, Serife O. & Cirpan, Ali & Toppare, Levent, 2021. "Non-fullerene organic photovoltaics based on thienopyrroledione comprising random copolymers; effect of alkyl chains," Renewable Energy, Elsevier, vol. 178(C), pages 202-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:27:y:2013:i:c:p:334-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.