IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v214y2025ics1364032125001972.html
   My bibliography  Save this article

MXenes-based materials for CO2 capture and conversion: A comprehensive review

Author

Listed:
  • Aizaz, Umer
  • Ul Hassan, Intisar
  • Onaizi, Sagheer A.

Abstract

CO2 concentration in the atmosphere is rapidly increasing, causing serious environmental problems and threatening the sustainability of life on Earth. To combat CO2 emissions, several materials have been developed and applied in some studies. One class of emerging nanomaterials with a potential efficacy for CO2 capture and conversion is MXenes. However, comprehensive and up-to-date reviews, as the one devised herein, on the utilization of MXenes for CO2 capture and conversion are still greatly lacking in the published research. Accordingly, this work is devoted to reviewing the recent developments in MXenes applications for CO2 capture and conversion into valuable chemicals and fuels. To provide the reader with a comprehensive knowledge on the topic, MXenes synthesis, characterization, and structural modifications aiming to boost charge separation and visible light absorption and, thus, photocatalytic performance has been presented before delving into CO2 capture and conversion contents. Then, recent studies on CO2 capture, including Direct Air Capture, using MXene-based materials as adsorbents have been reviewed. Additionally, CO2 separation from gas mixtures using membranes (including mixed matrix membranes) fabricated from MXene-based materials has been thoroughly presented and discussed. More importantly, recent studies on the application of MXene-based materials for the photocatalytic and electrocatalytic conversion of CO2 into valuable chemicals and fuels have been extensively discussed; the involved mechanisms in these conversion processes have been detailed. This review concludes by highlighting the challenges, limitations, and obstacles still facing the deployment of MXenes-based materials for CO2 capture and conversion while suggesting future research directions to address them.

Suggested Citation

  • Aizaz, Umer & Ul Hassan, Intisar & Onaizi, Sagheer A., 2025. "MXenes-based materials for CO2 capture and conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001972
    DOI: 10.1016/j.rser.2025.115524
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001972
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115524?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.