IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v214y2025ics1364032125001947.html
   My bibliography  Save this article

Fatigue in vibration energy harvesters: State-of-the-art review

Author

Listed:
  • Lu, Wenjia
  • Fu, Jiyang
  • Wu, Nan
  • He, Yuncheng

Abstract

The fatigue performance of vibration energy harvesters directly impacts their reliability and longevity in practical applications, making it to be crucial to study their fatigue behavior. However, current research in this area remains insufficient. This study systematically reviews the fatigue performance of piezoelectric, electromagnetic, and electrostatic energy harvesters, with a focus on analyzing the differences in fatigue behavior across various materials and structural designs and their effects on harvester lifespan. The work begins by introducing the energy transduction mechanisms in vibration energy harvesting systems and the associated fatigue issues, followed by an assessment of relevant research methodologies. The influence of piezoelectric materials and harvester structural design on fatigue performance is then explored, revealing the impacts of material fatigue damage, stress concentration, and adhesive interface problems on device longevity. For electromagnetic and electrostatic energy harvesters, this analysis highlights current research gaps, particularly in the areas of mechanical wear and charge leakage. The study further discusses methods to enhance harvester fatigue performance through material selection and structural optimization and suggests that future research should focus on the development of new materials, structural improvements, and the investigation of fatigue performance under multiple environmental conditions. This work provides a comprehensive review and quantitative analysis of fatigue in vibration energy harvesters, aiming to advance the field.

Suggested Citation

  • Lu, Wenjia & Fu, Jiyang & Wu, Nan & He, Yuncheng, 2025. "Fatigue in vibration energy harvesters: State-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001947
    DOI: 10.1016/j.rser.2025.115521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001947
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115521?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.