IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v214y2025ics1364032125001832.html
   My bibliography  Save this article

Dual-gate Temporal Fusion Transformer for estimating large-scale land surface solar irradiation

Author

Listed:
  • Liao, Xuan
  • Wong, Man Sing
  • Zhu, Rui

Abstract

An accurate estimation of land surface solar irradiation (LSSI) is crucial to address the solar intermittency for optimizing solar photovoltaic (PV) installation and mitigrating PV curtailment. This involves enhancing solar photovoltaic (PV) system efficiency by optimizing layout and maximizing solar energy capture and conversion. While deep learning methods have significantly improved the rapid and accurate estimation of solar irradiation, they face challenges in handling geographical heterogeneity and providing interpretable results. To address these challenges, this study proposes the Dual-gate Temporal Fusion Transformer (DGTFT), a novel interpretable deep learning network, to improve LSSI estimation. By integrating the Temporal Fusion Transformer with the Dual-gate Gated Residual Network and Dual-gate Multi-head Cross Attention, the optimal network achieved R2=0.93, MAE=0.022 (kWh/m2), RMSE=0.038 (kWh/m2), rRMSE=0.13, and nRMSE=0.048 through ablation experiments. When applied to datasets observed from Australia, China, and Japan, DGTFT outperformed traditional machine learning methods with a minimum R2 increase of 23.88%, MAE decrease of 43.18%, RMSE decrease of 9.09%, rRMSE decrease of 32.25%, and nRMSE decrease of 62.79%. Furthermore, the interpretability results of the DGTFT model indicate that clear-sky solar irradiation significantly contributed to the model’s performance from Australia and Japan; and the maximum temperature and humidity were the largest importance variables in the Chinese dataset. Accurately estimating LSSI, providing interpretable results, and generating continuous solar irradiation maps for large-scale areas, this study aids in quantifying solar potential and offers scientific guidance for the PV industry’s development.

Suggested Citation

  • Liao, Xuan & Wong, Man Sing & Zhu, Rui, 2025. "Dual-gate Temporal Fusion Transformer for estimating large-scale land surface solar irradiation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
  • Handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001832
    DOI: 10.1016/j.rser.2025.115510
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001832
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115510?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001832. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.