Author
Listed:
- Aftab, Qudsia
- Wang, Xiaoyang
- Lu, Jinfeng
- Tariq, Maryam
- Liu, Yuexian
Abstract
Soil microbial fuel cells (SMFCs) represent a promising technology that integrates bioremediation and bioelectrogenesis, allowing for the simultaneous generation of renewable energy and the remediation of contaminated soil. This approach capitalizes on the unique capabilities of electroactive bacteria (EABs) to mediate electron transfer from organic pollutants to anode within the soil environments. Despite advancements, critical knowledge gaps persist regarding the intricate dynamics of electroactive microbial communities and the optimization of SMFC systems for practical implementation. This review delves into the intricate mechanism of intra-microbial interactions and extracellular electron transfer processes within SMFCs. It provides a comprehensive overview of the dominant microbial communities, key factors influencing biofilm formation, and strategies for enhancing microbial interactions and system efficiency. Key findings indicate that maintaining a neutral to slightly alkaline pH, operating temperatures of 20–45 °C, and horizontally positioned electrodes foster optimal microbial activity and interactions. The integration of stainless-steel mesh with carbon-based anodes has demonstrated significant improvements in power generation, attributed to enhanced conductivity, large surface area, and resistance to corrosion. Furthermore, this review identifies key challenges in SMFC technology, such as microbial stability, electrode fouling, and long-term operational performance, and provides insights into overcoming these limitations. By addressing these constraints and refining system parameters, SMFCs hold immense potential as sustainable solutions for soil pollution remediation and renewable energy production. This review underscores the transformative role of SMFCs in advancing eco-friendly energy technologies and environmental restoration strategies.
Suggested Citation
Aftab, Qudsia & Wang, Xiaoyang & Lu, Jinfeng & Tariq, Maryam & Liu, Yuexian, 2025.
"Advancing soil microbial fuel cells: Exploring bioelectrogenesis mechanisms for integration into environmental bioremediation,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 214(C).
Handle:
RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001686
DOI: 10.1016/j.rser.2025.115495
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:214:y:2025:i:c:s1364032125001686. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.