IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics1364032125001583.html
   My bibliography  Save this article

Time-dependent behaviors of pile groups in geothermal heat exchangers

Author

Listed:
  • Zhao, Yong Zhi
  • Shi, Zhenming
  • Ai, Zhi Yong

Abstract

Energy pile groups transmit geothermal energy and have attracted widespread attention as one of new building energy-saving technologies. Accurately predicting the time-dependent behaviors of energy pile groups is a challenge, given the complex thermal and mechanical interactions between piles, surrounding soils and the pile cap. This study presents a semi-analytical solution for analyzing energy pile groups within heat exchangers. Utilizing the transformed differential quadrature method, a flexible coefficient matrix for the saturated surrounding soils is acquired, which accounts for both consolidation and heat transfer. The piles are segmented, and the discrete solving equations considering thermal stresses and expansion are formulated. To accurately reflect the interactions among piles-to-piles, piles-to-soils and piles-to-pile cap, the coupled matrix equations are constructed with involving both the displacement coordination and the force equilibrium at the pile-soil interface as well as the pile cap. The validity of the proposed solution is confirmed through comparisons with results from on-site tests and simulations using COMSOL. Pivotal parameters including temperature variations, pile spacing, and the relative stiffness are discussed through examples. Compared with traditional simulation and field test, the proposed solution enables fast and accurate prediction of displacement and load distribution across pile groups, facilitating the safety evaluation of heat exchangers.

Suggested Citation

  • Zhao, Yong Zhi & Shi, Zhenming & Ai, Zhi Yong, 2025. "Time-dependent behaviors of pile groups in geothermal heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001583
    DOI: 10.1016/j.rser.2025.115485
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001583
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115485?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.