Author
Listed:
- Park, Joungho
- Kang, Sungho
- Kim, Sunwoo
- Kim, Hana
- Cho, Hyun-Seok
- Lee, Changsoo
- Kim, MinJoong
- Lee, Jay H.
Abstract
The production of green hydrogen through renewable energy is increasingly recognized as a viable alternative to fossil fuels in efforts towards global decarbonization. Alkaline water electrolysis, notable for its long operational history and scalability, is a pivotal technology in the mass production of green hydrogen. However, the variability of renewable energy sources presents significant challenges, particularly the frequent on/off operations that accelerate degradation of the electrolysis stack. This study assesses how degradation caused by the instability of renewable energy sources impacts the economic feasibility and productivity of alkaline water electrolysis under. A comprehensive model is developed to forecast efficiency declines in hydrogen production due to degradation and to evaluate renewable energy outputs using meteorological data. Economic viability is analyzed through various scenarios using the levelized cost of hydrogen. Initial results reveal substantial economic and productivity losses when degradation is considered, compared to non-degradation scenarios. The integration of multiple types of renewable sources reduces variability and thus mitigates degradation to some extent. While battery integration stabilizes renewable energy, economic challenges persist due to high costs despite reduced on/off cycles. The study also explores the trade-offs between economic factors and the frequency of stack replacements, generating optimal replacement schedules across different efficiency settings. The sensitivity analysis underscores the significant influence of degradation on productivity and economic outcomes, as well as the uncertainties related to cost and meteorological data.
Suggested Citation
Park, Joungho & Kang, Sungho & Kim, Sunwoo & Kim, Hana & Cho, Hyun-Seok & Lee, Changsoo & Kim, MinJoong & Lee, Jay H., 2025.
"The impact of degradation on the economics of green hydrogen,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
Handle:
RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001455
DOI: 10.1016/j.rser.2025.115472
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001455. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.