IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics1364032125001418.html
   My bibliography  Save this article

Snow impact on PV performance: Assessing the zero-output challenge in cold areas

Author

Listed:
  • Dahlioui, Dounia
  • Øgaard, Mari Benedikte
  • Imenes, Anne Gerd

Abstract

Solar photovoltaic (PV) technology has a great potential for renewable energy generation. However, in cold climates with heavy snowfall, PV systems performance might be significantly reduced. This review investigates the impact of snow on solar PV in regions with harsh winters. It describes the snow soiling process while determining the main factors leading to snow losses in PV plants. Factors influencing snow losses are classified into four major categories: controllable factors, such as surface properties and PV installation characteristics, and uncontrollable factors, including climatic conditions and snow properties. The literature review reveals significant variations in reported snow losses due to the number of influential factors. One key recommendation is to improve PV system design to better accommodate snowy conditions, rather than relying on configurations optimized for milder conditions. The review also identifies a gap in the literature regarding the implementation of safety devices such as snow guards in the context of PV systems. With the increasing adoption of bifacial technologies, further research is needed to assess the benefits of snow's high albedo. For accurate snow loss modeling and shedding prediction, it is crucial to include additional factors impacting snow accumulation and clearing, such as liquid water content which affects snow adhesion. Additionally, enhancing models through image analysis and integrating drones for precise camera angles can significantly improve snow detection across various PV configurations and locations.

Suggested Citation

  • Dahlioui, Dounia & Øgaard, Mari Benedikte & Imenes, Anne Gerd, 2025. "Snow impact on PV performance: Assessing the zero-output challenge in cold areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001418
    DOI: 10.1016/j.rser.2025.115468
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115468?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125001418. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.