IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics136403212500111x.html
   My bibliography  Save this article

Converting underground natural gas storage for hydrogen: A review of advantages, challenges and economics

Author

Listed:
  • Deng, Peng
  • Chen, Zhangxin
  • Peng, Xiaolong
  • Zhu, Suyang
  • Liu, Benjieming
  • Lei, Xuantong
  • Di, Chaojie

Abstract

In the natural gas era, an underground gas storage capacity of more than 10 trillion cubic feet has been developed globally. However, as the global energy demand shifts toward hydrogen, the potential for repurposing these storage facilities for hydrogen has not been systematically investigated. In the hydrogen era, failing to utilize this substantial volume could result in significant resource wastage. This study systematically analyzes the feasibility of Converting Underground Gas Storage (CUGS) for hydrogen for the first time. We establish a new conceptual framework by carefully exploring the reuse potential of surface facilities and evaluating the effects of reservoir environment changes. Based on these analyses, we summarize the advantages and challenges of this technical framework. In addition, an economic assessment is conducted by comparing the CUGS route with the traditional method of Converting Depleted Gas Reservoirs (CDGR) for hydrogen storage. Our results show that the CUGS route will face significant challenges, including water intrusion, geochemical reactions, leakage, and potential integrity damage. Nevertheless, it remains a rapid, stable, and low-cost method for underground hydrogen storage. In particular, our findings indicate that it can increase economic benefits by 3.1 times compared to the traditional CDGR route. Such evidence suggests that the CUGS route offers a large-scale, stable, and economical option for underground hydrogen storage, while also avoiding the abandonment of existing underground natural gas storage facilities in a future hydrogen-oriented society.

Suggested Citation

  • Deng, Peng & Chen, Zhangxin & Peng, Xiaolong & Zhu, Suyang & Liu, Benjieming & Lei, Xuantong & Di, Chaojie, 2025. "Converting underground natural gas storage for hydrogen: A review of advantages, challenges and economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s136403212500111x
    DOI: 10.1016/j.rser.2025.115438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212500111X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s136403212500111x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.