IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics136403212500084x.html
   My bibliography  Save this article

Recent progress and prospects of hydrogen combustion chemistry in the gas phase

Author

Listed:
  • Li, Guoxing
  • Niu, Mingbo
  • Jian, Jie
  • Lu, Youjun

Abstract

Hydrogen is emerging as a clean and renewable energy source indispensable to the realization of a carbon neutral society. Inspired by the prospect of sustainable and carbon-free energy supplies, hydrogen has been widely utilized in various combustion engines. This review article highlights recent progress in understanding hydrogen combustion chemistry in the gas phase. At first, the explosion limits of hydrogen-oxygen mixtures are discussed to demonstrate the intrinsically nonmonotonic kinetic behavior. Fundamental experiments of hydrogen combustion in terms of ignition delay times, laminar flame speeds and speciation are systematically summarized, and the value of the reported data is discussed. Furthermore, effective strategies towards more accurate experimental diagnostics are outlined. The current status of detailed and simplified kinetic model development is then appraised, followed by a critical discussion on the rate constants of important elementary reactions that are still in dispute. The essential importance of the comprehensiveness of chemical fidelity for mechanisms at the detailed and reduced levels is emphasized. Subsequently, the knowledge of ozone-assisted oxidation of hydrogen is overviewed. The effects of ozone addition on the characteristics of hydrogen oxidation are analyzed, including ignition temperature, flame burning velocity and flame structure. The ozone sub-mechanism and associated reaction rates are also carefully assessed. Finally, concluding comments and an outlook towards future research on gas-phase hydrogen combustion chemistry are presented.

Suggested Citation

  • Li, Guoxing & Niu, Mingbo & Jian, Jie & Lu, Youjun, 2025. "Recent progress and prospects of hydrogen combustion chemistry in the gas phase," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s136403212500084x
    DOI: 10.1016/j.rser.2025.115411
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212500084X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115411?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s136403212500084x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.