IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v212y2025ics1364032125001030.html
   My bibliography  Save this article

Existing technologies and scientific advancements to decarbonize shipping by retrofitting

Author

Listed:
  • Kondratenko, Aleksander A.
  • Zhang, Mingyang
  • Tavakoli, Sasan
  • Altarriba, Elias
  • Hirdaris, Spyros

Abstract

The maritime industry is transporting about 90 % of world commerce, contributing to the global greenhouse gas emissions that cause climate change. Increasing pressure on the sector to reduce its carbon footprint requires developing specialized energy-efficient technologies and studying their compatibility with modern safety and sustainability expectations of the waterborne sector. This research supports the United Nations sustainable development goals SDG 7 (Affordable and clean energy) and 13 (Climate Action), and reviews available technologies for shipping decarbonization through design for retrofitting. Promising research areas to improve the energy efficiency of ships could focus on design concepts and methodologies, fluid dynamics, and artificial intelligence. The study suggests that while individual promising decarbonization technologies are available, a comprehensive and coordinated approach is necessary to decarbonize global shipping efficiently. The study identified three promising paths of ship retrofitting to meet the International Maritime Organization decarbonizing objective 2050, aiming at a 70 % reduction of annual greenhouse gas emissions compared to 2008. The first path – using green energy sources (e.g., ammonia, battery, and methanol) – requires scaling up technologies and developing a regulatory framework and control of the lifecycle of the fuel production process. The second path – using ship-based carbon capture technologies, ship design (e.g., hull retrofitting, air lubrication, and wind-assisted propulsion), and operation solutions (e.g., weather routing and logistics planning) – requires building more CO2 storage and control of the lifecycle of liquified CO2. The third path – using biodiesel as a fuel in combination with ship design and operation solutions – requires extending feedstock for biodiesel production.

Suggested Citation

  • Kondratenko, Aleksander A. & Zhang, Mingyang & Tavakoli, Sasan & Altarriba, Elias & Hirdaris, Spyros, 2025. "Existing technologies and scientific advancements to decarbonize shipping by retrofitting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125001030
    DOI: 10.1016/j.rser.2025.115430
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125001030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115430?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:212:y:2025:i:c:s1364032125001030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.