Author
Listed:
- Gkousis, Spiros
- Braimakis, Konstantinos
- Nimmegeers, Philippe
- Karellas, Sotirios
- Compernolle, Tine
Abstract
Geothermal energy is a renewable energy source that can contribute to a decarbonized European energy mix. Geothermal Organic Rankine Cycle (ORC) units can produce power from medium enthalpy hydrothermal resources that are commonly available in Europe. However, their techno-economic and environmental performance is greatly dependent on the site-specific geological conditions. This study proposes a two-step framework to optimize the design and investigate the Levelized Cost Of Electricity (LCOE), Global Warming Impact (GWI), and fifteen other environmental indicators of geothermal ORC units for various geological conditions. First, the LCOE and GWI of the system are calculated via integrated geo-technical, ORC process, techno-economic and life cycle analysis calculations. Second, artificial neural networks (ANN) are used to model for the system and genetic algorithms are used to optimize its design for multiple techno-economic and environmental objectives. It is shown that the techno-economic and environmental performance of the geothermal ORC are driven by the same factors. A higher geofluid temperature results into higher power production and lower LCOE and environmental impacts. Similarly, the LCOE and environmental impacts reduce for increasing reservoir permeability and thickness because the pumping capacity to extract the geofluid reduces. This study shows that geothermal ORCs can be a promising alternative for power production in Europe, though their techno-economic and environmental performance are strongly dependent on the local geological conditions. These conditions can also influence the optimal ORC design. This study also demonstrates the benefits of using ANNs for the optimization of geothermal ORC units.
Suggested Citation
Gkousis, Spiros & Braimakis, Konstantinos & Nimmegeers, Philippe & Karellas, Sotirios & Compernolle, Tine, 2025.
"Multi-objective optimization of medium-enthalpy geothermal Organic Rankine Cycle plants,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
Handle:
RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124008761
DOI: 10.1016/j.rser.2024.115150
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s1364032124008761. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.