IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v210y2025ics136403212400875x.html
   My bibliography  Save this article

A modelling tool selection for decarbonising industrial process heat systems

Author

Listed:
  • Lahijani, Ahmad M.
  • Protheroe, Michael D.
  • Gschwendtner, Michael

Abstract

Industrial Process Heat systems are critical to various industrial processes, representing a significant share of global energy use and emissions. Effective modelling of these systems is essential for evaluating long-term economic and environmental impacts of different technologies. This modelling approach must integrate internal process-specific parameters, such as heat demand dynamics and technological metrics, alongside broader factors like energy costs, emissions policies, and resource availability. This research introduces a comprehensive framework for selecting tools to model industrial process heat systems, focusing on technological, economic, and environmental performance. An initial evaluation of twenty-five tools led to the shortlisting of five based on criteria such as modelling accuracy, scalability, data handling, compatibility with industrial systems, and environmental impacts. Using software engineering principles, a systematic selection process was developed to categorise tools based on essential and desirable capabilities. This framework was validated through an example application, incorporating both technical and practical considerations. The findings highlight the importance of integrating dynamic simulation capabilities with real-time data analysis to improve evaluation accuracy and emphasise user-friendly interfaces to broader industry adoption. The study discusses the framework's applicability, provides key insights, and identifies existing gaps, emphasising the need for adaptable modelling tools to meet evolving industrial requirements. The future applicability of the selection process is discussed, highlighting findings from the capability categorisation, gaps to be addressed, and future trends in modelling these systems. This research contributes to sustainable industrial operations by offering a robust tool selection framework, supporting informed decision-making to reduce emissions and advance industrial sustainability.

Suggested Citation

  • Lahijani, Ahmad M. & Protheroe, Michael D. & Gschwendtner, Michael, 2025. "A modelling tool selection for decarbonising industrial process heat systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:rensus:v:210:y:2025:i:c:s136403212400875x
    DOI: 10.1016/j.rser.2024.115149
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212400875X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115149?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:210:y:2025:i:c:s136403212400875x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.