IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124008219.html
   My bibliography  Save this article

A critical review of effects, action mechanisms and mitigation strategies of salinity in anaerobic digestion

Author

Listed:
  • Mei, Wangyang
  • Li, Lili
  • Zhao, Qingliang
  • Li, Xinwen
  • Wang, Zhaoxia
  • Gao, Qingwei
  • Wei, Liangliang
  • Wang, Kun
  • Jiang, Junqiu

Abstract

Salinity stress affects the anaerobic digestion (AD) process and reduces methane production in most cases. This review described the occurrence and impacts of salinity from common substrates (e.g., food waste, organic wastewater and algae) in AD process, and elucidated the mechanisms by which salinity affects AD from the perspectives of microbial community, key genes and enzymes. Salinity in AD comes mainly from chemical additives in the substrate (e.g., salt in food waste) or from the substrate itself (e.g., saline algae). Low salinity can promote methane production, as appropriate Na+ concentrations can promote ATP synthesis and NADH oxidation, thus facilitating microbial metabolism. High salinity leads to lysis of salt-intolerant microbes, altering the microbial community and inactivating key enzymes, thereby blocking methanogenesis. Microbes can adopt “salt-in” and “compatible solute” strategies to resist salt stress. In addition, quorum sensing is also considered as a potential defense mechanism. Inspired by these cell survival mechanisms, the disinhibition strategies were elaborated from three aspects, namely front optimization (pretreatment, co-digestion, inoculum acclimation, dilution), process optimization (addition of osmoprotectants, potassium, conductive materials and other additives), and system optimization (bioelectrochemical enhancement). This review provides guidance for further studies on developing suitable mitigation strategies to enhance methane production under different salinity stress conditions.

Suggested Citation

  • Mei, Wangyang & Li, Lili & Zhao, Qingliang & Li, Xinwen & Wang, Zhaoxia & Gao, Qingwei & Wei, Liangliang & Wang, Kun & Jiang, Junqiu, 2025. "A critical review of effects, action mechanisms and mitigation strategies of salinity in anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008219
    DOI: 10.1016/j.rser.2024.115095
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124008219
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115095?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124008219. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.