IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124007378.html
   My bibliography  Save this article

Sustainability assessment of catalyst design on CO2-derived fuel production

Author

Listed:
  • Shadbahr, Jalil
  • Peeples, Craig A.
  • Pahija, Ergys
  • Panaritis, Christopher
  • Boffito, Daria Camilla
  • Patience, Gregory
  • Bensebaa, Farid

Abstract

Levelized carbon cost abatement (LCCA) and technology learning curves (TLC) are combined to assess the current technology gaps for expediting the deployment of CO2-based renewable fuels. This study is conducted across three levels: Assessing the impact of the Fischer-Tropsch Synthesis (FTS) catalyst improvement on products, estimating the potential reduction in CO2 emissions, and calculating the cost reduction per unit of avoided CO2 emissions. A novel hybrid approach combines bottom-up TEA and LCA tools to assess FTS catalysts, while top-down TLC methodology evaluates future projections of the CO2 to jet fuel (CtJ) platform. The evaluation and comparison of the newly designed FTS catalyst (CYL) and a conventional catalyst (COC) on the CtJ platform are conducted within this scope. Replacing COC with CYL leads to an increase of >170 % in catalyst cost. However, despite the increase in catalyst cost, the overall fuel production of the CtJ platform is boosted by 16 %, and the energy efficiency is improved by +13 %. Consequently, the CYL catalyst enables the production of jet fuel and diesel at a lower cost (−15 % to −17 %) compared to COC from 2027 to 2050. Furthermore, for both cases' equal net CO2 capture, CYL requires 15 % lower CO2 capture and thus 41 % lower CO2 emissions from the CtJ platform than COC. LCCA of CO2-derived fuels is projected to be very close to the $170/tonne CO2 carbon tax target in 2030. Thus, CO2-derived jet fuels are expected to compete with fossil fuels in the Canadian market.

Suggested Citation

  • Shadbahr, Jalil & Peeples, Craig A. & Pahija, Ergys & Panaritis, Christopher & Boffito, Daria Camilla & Patience, Gregory & Bensebaa, Farid, 2025. "Sustainability assessment of catalyst design on CO2-derived fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007378
    DOI: 10.1016/j.rser.2024.115011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007378
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007378. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.