IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics1364032124007093.html
   My bibliography  Save this article

Recent research advances in wind turbine thermal management technologies

Author

Listed:
  • Ji, Jun
  • Zhang, Chaoxiang
  • Zhang, Xuelai
  • Chen, Yi

Abstract

The global environment is deteriorating and the energy demand is increasing rapidly, leading to a growing interest in the development and utilization of new energy sources. Among them, wind energy stands out as a widely distributed and non-polluting renewable option, making wind power generation technology a key focus of scientific research. As the research on wind power generation continues to advance, wind turbines worldwide are evolving towards higher power and larger capacity. However, the progress in the research on cooling methods for wind power generation systems has been slow, resulting in the current cooling technology being unable to completely solve the heat buildup problem of wind turbines. To ensure efficient heat dissipation of high-power and large-capacity wind turbines, there is a need for a stable and effective thermal management system. This study reviews the state of research on cooling technologies for wind power systems and provides an overview of the thermal behavior and temperature field distribution of current wind power system components. In addition, the potential use of the thermal management technology based on phase change materials in wind power thermal management system in the future is also discussed.

Suggested Citation

  • Ji, Jun & Zhang, Chaoxiang & Zhang, Xuelai & Chen, Yi, 2025. "Recent research advances in wind turbine thermal management technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007093
    DOI: 10.1016/j.rser.2024.114983
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124007093
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114983?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s1364032124007093. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.