IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v206y2024ics1364032124005963.html
   My bibliography  Save this article

Review of data-driven models for quantifying load shed by non-residential buildings in the United States

Author

Listed:
  • Malhotra, Yashvi
  • Polly, Ben
  • MacDonald, Jason
  • Clark, Jordan D.

Abstract

Shifting and shedding power demand in buildings can be cost-effective techniques for grids to function reliably and for end users to earn compensation. Grid operators reimburse customers in proportion to the quantity of load shed. Simple data-driven methods are used to quantify this shed, which is the difference between a measured load during the event and modeled “baseline” that would have occurred in absence of the event. These methods have evolved over the years and in many cases have been integrated with building physics, to make them a hybrid between physics based and empirical models. However, there is no comprehensive analysis that provides guidance to building operators, grid operators and researchers in selecting appropriate models based on their specific needs and available data. This work aims to fill this gap by critically assessing the performance of baseline models put forward from the year 2000 through 2023. The literature reviewed includes reports generated by grid operators, reports from national laboratories and academic journal articles.

Suggested Citation

  • Malhotra, Yashvi & Polly, Ben & MacDonald, Jason & Clark, Jordan D., 2024. "Review of data-driven models for quantifying load shed by non-residential buildings in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 206(C).
  • Handle: RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005963
    DOI: 10.1016/j.rser.2024.114870
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124005963
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114870?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:206:y:2024:i:c:s1364032124005963. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.