Author
Listed:
- Maity, Niladri
- Garcia, Nestor
- Jaseer, E.A.
- Barman, Samir
- Aitani, Abdullah M.
- Tijani, Mansour M.
- Al-Yassir, Nabil
Abstract
Catalytic CO2 conversion has always been a fascinating area of research in chemistry. CO2 being a highly abundant and commercially cheap carbon feedstock, it is immensely appealing if such conversion could be advanced to novel economical and sustainable routes to take over the existing industrial processes for accessing highly demanding organic products. Acrylic acid is produced industrially by two-step catalytic processes involving partial oxidation of propylene. Catalytic acrylic acid production by a direct oxidative C–C coupling between olefin and CO2 has remained a great challenge for the research community due to unfavorable thermodynamics. However, reactions conducted in the presence of a suitable base leading to the acrylate product were envisaged to shed some light on this end. Indeed, this domain of exploration has gained significant interest, especially towards achieving a direct catalytic carboxylation of ethylene by CO2. While several earlier reviews probed into catalyst systems associated with this research, the recently surfaced promising catalysts remained unaddressed. These developments provide vital insights for designing high-performance materials in intentional applications and commercial technologies for catalytic acrylate production. Examining these developments creates an opportunity for more sustainable processes, utilizing CO2 as a C1 feedstock, contributing significantly to the circular carbon economy. This review explores the latest advancements, offering a comprehensive overview of the gradual evolution of catalyst systems, and identifying optimal candidates for intentional applications. Special attention is given to proposed reaction mechanisms supported by theoretical studies, enhancing understanding of reaction cycles and suggesting new strategies for better catalyst systems.
Suggested Citation
Maity, Niladri & Garcia, Nestor & Jaseer, E.A. & Barman, Samir & Aitani, Abdullah M. & Tijani, Mansour M. & Al-Yassir, Nabil, 2024.
"Advancement of catalyst systems towards the formation of acrylates from CO2 and ethylene,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
Handle:
RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124002065
DOI: 10.1016/j.rser.2024.114483
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124002065. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.