IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v197y2024ics1364032124001448.html
   My bibliography  Save this article

Variable renewable energy modeling system to study challenges that impact electrical load at different penetration levels: A case study on Kuwait's load profile

Author

Listed:
  • AL-Rasheedi, Majed
  • Al-Khayat, Mohammad

Abstract

The transitioning from conventional power systems to variable renewable energy (VRE) could impose significant challenges on transmission, short-term balancing requirements, and more cycling to ramp conventional plants. Kuwait's government has set a target of 15% of electricity generation from renewable resources by 2030 and more in the following years. This ambitious target requires close collaboration between researchers and decision-makers to overcome the upcoming challenges. The current study comes in the context of this objective to support decision-makers technically during planning and deploying VRE plats in various parts of the country. An in-house simulation modeling system for solar photovoltaic (PV) and wind power based on high-quality weather data has been developed. The system can model centralized or decentralized VRE scenarios. Several load characteristics have been used to examine the output of the scenario, such as the residual load, impact on the peak, and baseload due to changes in VRE penetration level. Other parameters, including capacity credit, full load hours, ramping power magnitude and rate, and overproduction of resources, are also outputs of the system. The output results of the modeling system have been validated against two years of operational solar PV and wind Shagaya power plants data. The results show combining solar PV with wind could dramatically increase the capacity credit, reduce overproduction, and reduce ramping power. The authors will continue evolve and improve this in-house modeling system to support research in this field and for the upcoming future RE projects instead of relying on commercial software.

Suggested Citation

  • AL-Rasheedi, Majed & Al-Khayat, Mohammad, 2024. "Variable renewable energy modeling system to study challenges that impact electrical load at different penetration levels: A case study on Kuwait's load profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001448
    DOI: 10.1016/j.rser.2024.114421
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124001448
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114421?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    2. Mills, Andrew D. & Rodriguez, Pía, 2020. "A simple and fast algorithm for estimating the capacity credit of solar and storage," Energy, Elsevier, vol. 210(C).
    3. Martin Hofmann & Gunther Seckmeyer, 2017. "Influence of Various Irradiance Models and Their Combination on Simulation Results of Photovoltaic Systems," Energies, MDPI, vol. 10(10), pages 1-24, September.
    4. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    5. González-Longatt, F. & Wall, P. & Terzija, V., 2012. "Wake effect in wind farm performance: Steady-state and dynamic behavior," Renewable Energy, Elsevier, vol. 39(1), pages 329-338.
    6. AL-Rasheedi, Majed & Gueymard, Christian A. & Al-Khayat, Mohammad & Ismail, Alaa & Lee, Jared A. & Al-Duaj, Hamad, 2020. "Performance evaluation of a utility-scale dual-technology photovoltaic power plant at the Shagaya Renewable Energy Park in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    7. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    8. Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
    9. Perez-Gallardo, J.R. & Azzaro-Pantel, C. & Astier, S. & Domenech, S. & Aguilar-Lasserre, A., 2014. "Ecodesign of photovoltaic grid-connected systems," Renewable Energy, Elsevier, vol. 64(C), pages 82-97.
    10. Zhou, Ella & Cole, Wesley & Frew, Bethany, 2018. "Valuing variable renewable energy for peak demand requirements," Energy, Elsevier, vol. 165(PA), pages 499-511.
    11. Fadaeenejad, M. & Radzi, M.A.M. & AbKadir, M.Z.A. & Hizam, H., 2014. "Assessment of hybrid renewable power sources for rural electrification in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 299-305.
    12. de Groot, Mats & Crijns-Graus, Wina & Harmsen, Robert, 2017. "The effects of variable renewable electricity on energy efficiency and full load hours of fossil-fired power plants in the European Union," Energy, Elsevier, vol. 138(C), pages 575-589.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Fang & Cheng Yang & Dengfeng Liu & Qiang Huang & Bo Ming & Long Cheng & Lu Wang & Gang Feng & Jianan Shang, 2023. "Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis," Energies, MDPI, vol. 16(20), pages 1-23, October.
    2. Nolting, Lars & Praktiknjo, Aaron, 2022. "The complexity dilemma – Insights from security of electricity supply assessments," Energy, Elsevier, vol. 241(C).
    3. Sachajdak, Andrzej & Lappalainen, Jari & Mikkonen, Hannu, 2019. "Dynamic simulation in development of contemporary energy systems – oxy combustion case study," Energy, Elsevier, vol. 181(C), pages 964-973.
    4. Wen, Lei & Song, Qianqian, 2023. "ELCC-based capacity value estimation of combined wind - storage system using IPSO algorithm," Energy, Elsevier, vol. 263(PB).
    5. Zbigniew Brodziński & Katarzyna Brodzińska & Mikołaj Szadziun, 2021. "Photovoltaic Farms—Economic Efficiency of Investments in North-East Poland," Energies, MDPI, vol. 14(8), pages 1-17, April.
    6. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    7. Klemm, Christian & Vennemann, Peter, 2021. "Modeling and optimization of multi-energy systems in mixed-use districts: A review of existing methods and approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    9. Huclin, Sébastien & Ramos, Andrés & Chaves, José Pablo & Matanza, Javier & González-Eguino, Mikel, 2023. "A methodological approach for assessing flexibility and capacity value in renewable-dominated power systems: A Spanish case study in 2030," Energy, Elsevier, vol. 285(C).
    10. Angelo Maiorino & Adrián Mota-Babiloni & Manuel Gesù Del Duca & Ciro Aprea, 2021. "Scheduling Optimization of a Cabinet Refrigerator Incorporating a Phase Change Material to Reduce Its Indirect Environmental Impact," Energies, MDPI, vol. 14(8), pages 1-17, April.
    11. Wang, Renshun & Wang, Shilong & Geng, Guangchao & Jiang, Quanyuan, 2024. "Multi-time-scale capacity credit assessment of renewable and energy storage considering complex operational time series," Applied Energy, Elsevier, vol. 355(C).
    12. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    13. Xu, Tingting & Gao, Weijun & Qian, Fanyue & Li, Yanxue, 2022. "The implementation limitation of variable renewable energies and its impacts on the public power grid," Energy, Elsevier, vol. 239(PA).
    14. Tsai, Chen-Hao & Figueroa-Acevedo, Armando & Boese, Maire & Li, Yifan & Mohan, Nihal & Okullo, James & Heath, Brandon & Bakke, Jordan, 2020. "Challenges of planning for high renewable futures: Experience in the U.S. midcontinent electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    15. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
    17. Morstyn, Thomas & Collett, Katherine A. & Vijay, Avinash & Deakin, Matthew & Wheeler, Scot & Bhagavathy, Sivapriya M. & Fele, Filiberto & McCulloch, Malcolm D., 2020. "OPEN: An open-source platform for developing smart local energy system applications," Applied Energy, Elsevier, vol. 275(C).
    18. Gil Ruiz, Samuel Andrés & Barriga, Julio Eduardo Cañón & Martínez, J. Alejandro, 2021. "Wind power assessment in the Caribbean region of Colombia, using ten-minute wind observations and ERA5 data," Renewable Energy, Elsevier, vol. 172(C), pages 158-176.
    19. Vrînceanu, Alexandra & Dumitrașcu, Monica & Kucsicsa, Gheorghe, 2022. "Site suitability for photovoltaic farms and current investment in Romania," Renewable Energy, Elsevier, vol. 187(C), pages 320-330.
    20. Neupane, Deependra & Kafle, Sagar & Karki, Kaji Ram & Kim, Dae Hyun & Pradhan, Prajal, 2022. "Solar and wind energy potential assessment at provincial level in Nepal: Geospatial and economic analysis," Renewable Energy, Elsevier, vol. 181(C), pages 278-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.