IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v195y2024ics1364032124000662.html
   My bibliography  Save this article

A new method for estimating the annual energy production of wind turbines in hot environments

Author

Listed:
  • Al-Khayat, Mohammad
  • AL-Rasheedi, Majed

Abstract

Accurately estimating wind turbines' annual energy production (AEP) is a paramount for planning and performance assessment of wind power projects. Inaccurate estimates during the planning phase could result in lower/higher project economic feasibility. This leads to financial consequences in the project’s contractual agreement. Furthermore, comparing the effective turbine’s operational performance under operational site conditions to the guaranteed performance is also critical. The current standard practice of the International Electrotechnical Commission (IEC) for calculating the AEP consists of using the site’s Weibull parameters derived only from the wind speed measurements and ignoring the air temperature measurements impact wind turbine operation. This is inadequate under high-temperature environments, where various meteorological processes impact the wind frequency distribution function. Moreover, wind turbine output power typically starts derating at high air temperatures to prevent overheating the electric and mechanical systems. The current study proposes a new method by categorizing the wind speed data into bins of 0.5 °C each, where the frequency distribution and Weibull parameters are produced for each bin. Therefore, calculating the AEP by the new method requires creating several wind speed distribution functions for the temperature ranges ranging between derating cut-in temperature and shutdown temperature. The Weibull parameters are found to change significantly during high-temperature conditions. Validation conducted using multiple years of wind resource assessment and Shagaya wind farm power data has shown the newly developed method has higher accuracy than the standard IEC method in hot environments and can better predict the energy losses in the upcoming wind farms in the region.

Suggested Citation

  • Al-Khayat, Mohammad & AL-Rasheedi, Majed, 2024. "A new method for estimating the annual energy production of wind turbines in hot environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
  • Handle: RePEc:eee:rensus:v:195:y:2024:i:c:s1364032124000662
    DOI: 10.1016/j.rser.2024.114343
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124000662
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114343?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "Models for monitoring wind farm power," Renewable Energy, Elsevier, vol. 34(3), pages 583-590.
    2. Naegele, S.M. & McCandless, T.C. & Greybush, S.J. & Young, G.S. & Haupt, S.E. & Al-Rasheedi, M., 2020. "Climatology of wind variability for the Shagaya region in Kuwait," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rana Muhammad Adnan & Zhongmin Liang & Xiaohui Yuan & Ozgur Kisi & Muhammad Akhlaq & Binquan Li, 2019. "Comparison of LSSVR, M5RT, NF-GP, and NF-SC Models for Predictions of Hourly Wind Speed and Wind Power Based on Cross-Validation," Energies, MDPI, vol. 12(2), pages 1-22, January.
    2. Zhang, Zijun & Kusiak, Andrew & Song, Zhe, 2013. "Scheduling electric power production at a wind farm," European Journal of Operational Research, Elsevier, vol. 224(1), pages 227-238.
    3. Colak, Ilhami & Sagiroglu, Seref & Yesilbudak, Mehmet, 2012. "Data mining and wind power prediction: A literature review," Renewable Energy, Elsevier, vol. 46(C), pages 241-247.
    4. Taslimi-Renani, Ehsan & Modiri-Delshad, Mostafa & Elias, Mohamad Fathi Mohamad & Rahim, Nasrudin Abd., 2016. "Development of an enhanced parametric model for wind turbine power curve," Applied Energy, Elsevier, vol. 177(C), pages 544-552.
    5. Lydia, M. & Kumar, S. Suresh & Selvakumar, A. Immanuel & Prem Kumar, G. Edwin, 2014. "A comprehensive review on wind turbine power curve modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 452-460.
    6. He, Yaoyao & Zhu, Chuang & An, Xueli, 2023. "A trend-based method for the prediction of offshore wind power ramp," Renewable Energy, Elsevier, vol. 209(C), pages 248-261.
    7. Morshedizadeh, Majid & Kordestani, Mojtaba & Carriveau, Rupp & Ting, David S.-K. & Saif, Mehrdad, 2017. "Application of imputation techniques and Adaptive Neuro-Fuzzy Inference System to predict wind turbine power production," Energy, Elsevier, vol. 138(C), pages 394-404.
    8. Francisco Bilendo & Angela Meyer & Hamed Badihi & Ningyun Lu & Philippe Cambron & Bin Jiang, 2022. "Applications and Modeling Techniques of Wind Turbine Power Curve for Wind Farms—A Review," Energies, MDPI, vol. 16(1), pages 1-38, December.
    9. Pelletier, Francis & Masson, Christian & Tahan, Antoine, 2016. "Wind turbine power curve modelling using artificial neural network," Renewable Energy, Elsevier, vol. 89(C), pages 207-214.
    10. Mazhar Hussain Baloch & Dahaman Ishak & Sohaib Tahir Chaudary & Baqir Ali & Ali Asghar Memon & Touqeer Ahmed Jumani, 2019. "Wind Power Integration: An Experimental Investigation for Powering Local Communities," Energies, MDPI, vol. 12(4), pages 1-24, February.
    11. He, J.Y. & Chan, P.W. & Li, Q.S. & Lee, C.W., 2022. "Characterizing coastal wind energy resources based on sodar and microwave radiometer observations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Mingzhe Zou & Sasa Z. Djokic, 2020. "A Review of Approaches for the Detection and Treatment of Outliers in Processing Wind Turbine and Wind Farm Measurements," Energies, MDPI, vol. 13(16), pages 1-30, August.
    13. Sun, Peng & Li, Jian & Wang, Caisheng & Lei, Xiao, 2016. "A generalized model for wind turbine anomaly identification based on SCADA data," Applied Energy, Elsevier, vol. 168(C), pages 550-567.
    14. Rashmi P. Shetty & A. Sathyabhama & Srinivasa Pai P., 2019. "Efficient Modelling and Simulation Of Wind Power Using Online Sequential Learning Algorithm For Feed Forward Networks," Journal of Mechanical Engineering Research & Developments (JMERD), Zibeline International Publishing, vol. 42(1), pages 109-115, March.
    15. Yan, Jie & Zhang, Hao & Liu, Yongqian & Han, Shuang & Li, Li, 2019. "Uncertainty estimation for wind energy conversion by probabilistic wind turbine power curve modelling," Applied Energy, Elsevier, vol. 239(C), pages 1356-1370.
    16. Han, Shuang & Qiao, Yanhui & Yan, Ping & Yan, Jie & Liu, Yongqian & Li, Li, 2020. "Wind turbine power curve modeling based on interval extreme probability density for the integration of renewable energies and electric vehicles," Renewable Energy, Elsevier, vol. 157(C), pages 190-203.
    17. Pandit, Ravi Kumar & Infield, David, 2019. "Comparative analysis of Gaussian Process power curve models based on different stationary covariance functions for the purpose of improving model accuracy," Renewable Energy, Elsevier, vol. 140(C), pages 190-202.
    18. Wang, Yibo & Shao, Xinyao & Liu, Chuang & Cai, Guowei & Kou, Lei & Wu, Zhiqiang, 2019. "Analysis of wind farm output characteristics based on descriptive statistical analysis and envelope domain," Energy, Elsevier, vol. 170(C), pages 580-591.
    19. Song, Zhe & Zhang, Zijun & Jiang, Yu & Zhu, Jin, 2018. "Wind turbine health state monitoring based on a Bayesian data-driven approach," Renewable Energy, Elsevier, vol. 125(C), pages 172-181.
    20. Wang, Yun & Duan, Xiaocong & Zou, Runmin & Zhang, Fan & Li, Yifen & Hu, Qinghua, 2023. "A novel data-driven deep learning approach for wind turbine power curve modeling," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:195:y:2024:i:c:s1364032124000662. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.