IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v186y2023ics1364032123004872.html
   My bibliography  Save this article

A greener last mile: Analyzing the carbon emission impact of pickup points in last-mile parcel delivery

Author

Listed:
  • Niemeijer, R.
  • Buijs, P.

Abstract

This paper analyzes the carbon emission impact of pickup points in last-mile parcel delivery. Pickup points provide customers and delivery companies with an alternative to attended home delivery. The delivery company can drop a parcel off at the pickup point, such as a service desk in a grocery store or a parcel locker, from where the customer collects the parcel. Because of the potential efficiency gains for the delivery vehicle, pickup points are often presented as a sustainable alternative to home delivery. The efficiency gains for the delivery vehicle need to be weighed against customers traveling to the pickup point by car, however. The mathematical analysis presented in this paper integrates continuous approximation techniques to assess the potential for improved delivery route efficiency with multinomial logistic regression for estimating the travel distance and mode choice of customers collecting their parcels. The results challenge the suggestion that pickup points are a universally sustainable alternative to home delivery. The potential for a net positive carbon emission impact is greatest when pickup points are established in urban settings, while in rural settings, the carbon emission benefits derived from improved delivery route efficiency are quickly offset by the carbon footprint associated with customer travel.

Suggested Citation

  • Niemeijer, R. & Buijs, P., 2023. "A greener last mile: Analyzing the carbon emission impact of pickup points in last-mile parcel delivery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123004872
    DOI: 10.1016/j.rser.2023.113630
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123004872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113630?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schwerdfeger, Stefan & Boysen, Nils, 2020. "Optimizing the changing locations of mobile parcel lockers in last-mile distribution," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1077-1094.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    2. Arevalo-Ascanio, Rafael & De Meyer, Annelies & Gevaers, Roel & Guisson, Ruben & Dewulf, Wouter, 2024. "From operational to strategic modelling: A continuous multi-scale approach for last-mile analysis," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    3. Kokkinou, Alinda & Quak, Hans & Mitas, Ondrej & Mandemakers, Albert, 2024. "Should I wait or should I go? Encouraging customers to make the more sustainable delivery choice," Research in Transportation Economics, Elsevier, vol. 103(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lin, Yun Hui & Wang, Yuan & He, Dongdong & Lee, Loo Hay, 2020. "Last-mile delivery: Optimal locker location under multinomial logit choice model," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    2. Liu, Yubin & Ye, Qiming & Escribano-Macias, Jose & Feng, Yuxiang & Candela, Eduardo & Angeloudis, Panagiotis, 2023. "Route planning for last-mile deliveries using mobile parcel lockers: A hybrid q-learning network approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 177(C).
    3. Vijoleta Vrhovac & Stana Vasić & Stevan Milisavljević & Branislav Dudić & Peter Štarchoň & Marina Žižakov, 2023. "Measuring E-Commerce User Experience in the Last-Mile Delivery," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    4. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    5. Leung, Abraham & Lachapelle, Ugo & Burke, Matthew, 2023. "Spatio-temporal analysis of Australia Post parcel locker use during the initial system growth phase in Queensland (2013–2017)," Journal of Transport Geography, Elsevier, vol. 110(C).
    6. Hörsting, Lena & Cleophas, Catherine, 2023. "Scheduling shared passenger and freight transport on a fixed infrastructure," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1158-1169.
    7. Kahr, Michael, 2022. "Determining locations and layouts for parcel lockers to support supply chain viability at the last mile," Omega, Elsevier, vol. 113(C).
    8. dos Santos, André Gustavo & Viana, Ana & Pedroso, João Pedro, 2022. "2-echelon lastmile delivery with lockers and occasional couriers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 162(C).
    9. Leise Kelli de Oliveira & Isabela Kopperschmidt de Oliveira & João Guilherme da Costa Braga França & Gustavo Wagner Nunes Balieiro & Jean Francisco Cardoso & Tiago Bogo & Diego Bogo & Marco Adriano Li, 2022. "Integrating Freight and Public Transport Terminals Infrastructure by Locating Lockers: Analysing a Feasible Solution for a Medium-Sized Brazilian Cities," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    10. Sara Kaboudvand & Benoit Montreuil, 2024. "Simulation-Based Assessment of Hyperconnected Megacity Parcel Logistics," Logistics, MDPI, vol. 8(3), pages 1-32, July.
    11. Tássia Faria de Assis & Victor Hugo Souza de Abreu & Mariane Gonzalez da Costa & Marcio de Almeida D’Agosto, 2022. "Methodology for Prioritizing Best Practices Applied to the Sustainable Last Mile—The Case of a Brazilian Parcel Delivery Service Company," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    12. Joanna Miklinska, 2023. "Development of the Parcel Machines Market for Last Mile Deliveries – The Case of Poland," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 72-85.
    13. Dukkanci, Okan & Campbell, James F. & Kara, Bahar Y., 2024. "Facility location decisions for drone delivery: A literature review," European Journal of Operational Research, Elsevier, vol. 316(2), pages 397-418.
    14. Peppel, Marcel & Ringbeck, Jürgen & Spinler, Stefan, 2022. "How will last-mile delivery be shaped in 2040? A Delphi-based scenario study," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    15. Grazyna Chaberek, 2021. "The Possibility of Reducing Individual Motorised Traffic through the Location of Collection Points Using the Example of Gda?sk, Poland," Sustainability, MDPI, vol. 13(19), pages 1-12, September.
    16. Mancini, Simona & Gansterer, Margaretha & Triki, Chefi, 2023. "Locker box location planning under uncertainty in demand and capacity availability," Omega, Elsevier, vol. 120(C).
    17. Massimo Di Gangi & Antonio Polimeni & Orlando Marco Belcore, 2023. "Freight Distribution in Small Islands: Integration between Naval Services and Parcel Lockers," Sustainability, MDPI, vol. 15(9), pages 1-15, May.
    18. Jasmin Grabenschweiger & Karl F. Doerner & Richard F. Hartl & Martin W. P. Savelsbergh, 2021. "The vehicle routing problem with heterogeneous locker boxes," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(1), pages 113-142, March.
    19. Büyüközkan, Gülçin & Ilıcak, Öykü, 2022. "Smart urban logistics: Literature review and future directions," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
    20. Yinying He & Csaba Csiszár, 2021. "Model for Crowdsourced Parcel Delivery Embedded into Mobility as a Service Based on Autonomous Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:186:y:2023:i:c:s1364032123004872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.