IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122006852.html
   My bibliography  Save this article

Noise pollution from wind turbines and its effects on wildlife: A cross-national analysis of current policies and planning regulations

Author

Listed:
  • Teff-Seker, Y.
  • Berger-Tal, O.
  • Lehnardt, Y.
  • Teschner, N.

Abstract

The quest for cleaner energy has caused governments to expand renewable energy infrastructure, including wind turbine farms. However, wind turbines (WTs) can also pose a risk to certain wildlife species, with wildlife-related research predominantly focusing on the potential harm caused to birds and bats from impact injuries. New evidence suggests that WT noise (WTN) impacts on wildlife can also be detrimental to wildlife, but rarely receive attention from planners. Potential types of WTN impact, including damage to wildlife physical wellbeing, vital survival mechanisms, social and reproductive processes, and habitat continuity. This article reviews the current literature on WTN effects on wildlife, and analyzes the planning guidelines relating to WTN and wildlife in three selected locales where WT infrastructure is being expanded: California, Germany, and Israel. Findings indicate that none of them have clear zoning limitations or obligatory environmental impact assessment (EIA) guidelines that require addressing the WTN effects on wildlife. However, some steps taken by planning authorities suggest potential for improvement. These include language in California planning recommendations addressing the potential effects of WTN on wildlife; a German survey of local bird species’ sensitivity to noise (including a WTN section); and increasing non-obligatory recommendations that encourage distancing WTs from protected areas. The study concludes that WTN effects on wildlife could be mitigated by gathering additional scientific data on WTN impacts, mapping species presence and auditory sensitivity to provide information for planners and advisors, and mandating the use of better science-informed practices and technologies for WTN reduction, such as long-term monitoring, zoning, and micro-siting.

Suggested Citation

  • Teff-Seker, Y. & Berger-Tal, O. & Lehnardt, Y. & Teschner, N., 2022. "Noise pollution from wind turbines and its effects on wildlife: A cross-national analysis of current policies and planning regulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006852
    DOI: 10.1016/j.rser.2022.112801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122006852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jade Read & Gareth Jones & Andrew N. Radford, 2014. "Fitness costs as well as benefits are important when considering responses to anthropogenic noise," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(1), pages 4-7.
    2. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    3. Schumacher, Kim, 2019. "Approval procedures for large-scale renewable energy installations: Comparison of national legal frameworks in Japan, New Zealand, the EU and the US," Energy Policy, Elsevier, vol. 129(C), pages 139-152.
    4. Mieke C. Zwart & Jonathon C. Dunn & Philip J.K. McGowan & Mark J. Whittingham, 2016. "Wind farm noise suppresses territorial defense behavior in a songbird," Behavioral Ecology, International Society for Behavioral Ecology, vol. 27(1), pages 101-108.
    5. Yael Lehnardt & Bob Bm Wong & Oded Berger-Tal & Leigh Simmons, 2019. "Intraspecific variation in animal responses to anthropogenic noise through long-term monitoring: a comment on Harding et al," Behavioral Ecology, International Society for Behavioral Ecology, vol. 30(6), pages 1514-1515.
    6. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    7. Katinas, Vladislovas & Marčiukaitis, Mantas & Tamašauskienė, Marijona, 2016. "Analysis of the wind turbine noise emissions and impact on the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 825-831.
    8. Hans Slabbekoorn & Margriet Peet, 2003. "Birds sing at a higher pitch in urban noise," Nature, Nature, vol. 424(6946), pages 267-267, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nicholas Christakis & Ioanna Evangelou & Dimitris Drikakis & George Kossioris, 2024. "A Computational Methodology for Assessing Wind Potential," Energies, MDPI, vol. 17(6), pages 1-23, March.
    2. Alharbi, Abdullah G. & Olabi, A.G. & Rezk, Hegazy & Fathy, Ahmed & Abdelkareem, Mohammad Ali, 2024. "Optimized energy management and control strategy of photovoltaic/PEM fuel cell/batteries/supercapacitors DC microgrid system," Energy, Elsevier, vol. 290(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    2. Siriyothai, Patcharakon & Kittichaikarn, Chawalit, 2023. "Performance enhancement of a galloping-based energy harvester with different groove depths on square bluff body," Renewable Energy, Elsevier, vol. 210(C), pages 148-158.
    3. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    4. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    5. Ramirez-Carrasco, C. & Córdova-Lepe, F. & Moreno-Gómez, F.N. & Velásquez, N.A., 2022. "A mathematical model for the impact of noise on population dynamics of a single species experiencing Lombard effect," Ecological Modelling, Elsevier, vol. 470(C).
    6. Huesca-Pérez, María Elena & Sheinbaum-Pardo, Claudia & Köppel, Johann, 2016. "Social implications of siting wind energy in a disadvantaged region – The case of the Isthmus of Tehuantepec, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 952-965.
    7. Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).
    8. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    9. Josimović, Boško & Cvjetić, Aleksandar & Furundžić, Danilo, 2021. "Strategic Environmental Assessment and the precautionary principle in the spatial planning of wind farms – European experience in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    10. Yousefi-Sahzabi, Amin & Unlu-Yucesoy, Eda & Sasaki, Kyuro & Yuosefi, Hossein & Widiatmojo, Arif & Sugai, Yuichi, 2017. "Turkish challenges for low-carbon society: Current status, government policies and social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 596-608.
    11. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    12. Loretta Mastroeni & Maurizio Naldi & Pierluigi Vellucci, 2023. "Who pushes the discussion on wind energy? An analysis of self-reposting behaviour on Twitter," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1763-1789, April.
    13. Tariq Ullah & Krzysztof Sobczak & Grzegorz Liśkiewicz & Amjid Khan, 2022. "Two-Dimensional URANS Numerical Investigation of Critical Parameters on a Pitch Oscillating VAWT Airfoil under Dynamic Stall," Energies, MDPI, vol. 15(15), pages 1-19, August.
    14. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    15. Cheng Guo & Delin Wang, 2019. "Frequency Regulation and Coordinated Control for Complex Wind Power Systems," Complexity, Hindawi, vol. 2019, pages 1-12, May.
    16. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    17. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    18. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    19. Lee, Kyung-Sook & Kim, Ju-Hee & Yoo, Seung-Hoon, 2021. "Would people pay a price premium for electricity from domestic wind power facilities? The case of South Korea," Energy Policy, Elsevier, vol. 156(C).
    20. Copena, Damián & Simón, Xavier, 2018. "Wind farms and payments to landowners: Opportunities for rural development for the case of Galicia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 38-47.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122006852. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.