IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v161y2022ics1364032122002556.html
   My bibliography  Save this article

Sustainable microgrid design with multiple demand areas and peer-to-peer energy trading involving seasonal factors and uncertainties

Author

Listed:
  • Yu, Vincent F.
  • Le, Thi Huynh Anh
  • Gupta, Jatinder N.D.

Abstract

The intermittent nature of renewable sources, uncertain demand load, and the location of microgrids cause challenges for the proper energy balance between supply and demand. To overcome the issues caused by such challenges and to be economically efficient while minimizing environmental impacts, microgrid design with renewable energy sources has recently attracted the attention of researchers. However, the sustainable microgrid design involving multiple types of demand areas (residential and industrial areas) and seasonal factors has not been explored by researchers. Therefore, this paper investigates the sustainable microgrid design problem with multiple types of demand areas and peer-to-peer energy trading involving seasonal factors and uncertainties to maximize total profit and to minimize environmental costs while satisfying demand. The problem is to determine optimal decisions on the number, location, and capacity of renewable distributed generation sources, energy flows, and seasonal electricity sales prices for the system that includes peer-to-peer trading. A fuzzy multi-objective programming model is developed to handle the uncertainties of demand load and capacity of renewable distributed generation sources. A genetic algorithm is applied to solve the proposed model. Results of computational experiments to assess its effectiveness and efficiency show that the proposed model increases total profit by over 12% and reduces environmental costs by almost 30% compared to the cases of no peer-to-peer energy trading and seasonal factors.

Suggested Citation

  • Yu, Vincent F. & Le, Thi Huynh Anh & Gupta, Jatinder N.D., 2022. "Sustainable microgrid design with multiple demand areas and peer-to-peer energy trading involving seasonal factors and uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002556
    DOI: 10.1016/j.rser.2022.112342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122002556
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "Multi-agent energy management of smart islands using primal-dual method of multipliers," Energy, Elsevier, vol. 208(C).
    2. Alam, Muhammad Raisul & St-Hilaire, Marc & Kunz, Thomas, 2019. "Peer-to-peer energy trading among smart homes," Applied Energy, Elsevier, vol. 238(C), pages 1434-1443.
    3. Zhang, X.Y. & Huang, G.H. & Zhu, H. & Li, Y.P., 2017. "A fuzzy-stochastic power system planning model: Reflection of dual objectives and dual uncertainties," Energy, Elsevier, vol. 123(C), pages 664-676.
    4. Boroumand, Raphaël Homayoun & Goutte, Stéphane & Porcher, Simon & Porcher, Thomas, 2015. "Hedging strategies in energy markets: The case of electricity retailers," Energy Economics, Elsevier, vol. 51(C), pages 503-509.
    5. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    6. Han, Dongho & Lee, Jay H., 2021. "Two-stage stochastic programming formulation for optimal design and operation of multi-microgrid system using data-based modeling of renewable energy sources," Applied Energy, Elsevier, vol. 291(C).
    7. Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
    8. Vieira, Guilherme & Zhang, Jie, 2021. "Peer-to-peer energy trading in a microgrid leveraged by smart contracts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    9. Lo Prete, Chiara & Hobbs, Benjamin F. & Norman, Catherine S. & Cano-Andrade, Sergio & Fuentes, Alejandro & von Spakovsky, Michael R. & Mili, Lamine, 2012. "Sustainability and reliability assessment of microgrids in a regional electricity market," Energy, Elsevier, vol. 41(1), pages 192-202.
    10. Narayan, Apurva & Ponnambalam, Kumaraswamy, 2017. "Risk-averse stochastic programming approach for microgrid planning under uncertainty," Renewable Energy, Elsevier, vol. 101(C), pages 399-408.
    11. Keshtkar, Azim & Arzanpour, Siamak, 2017. "An adaptive fuzzy logic system for residential energy management in smart grid environments," Applied Energy, Elsevier, vol. 186(P1), pages 68-81.
    12. Long, Chao & Wu, Jianzhong & Zhou, Yue & Jenkins, Nick, 2018. "Peer-to-peer energy sharing through a two-stage aggregated battery control in a community Microgrid," Applied Energy, Elsevier, vol. 226(C), pages 261-276.
    13. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "The impact of policy on microgrid economics: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3111-3119.
    14. Zahiri, B. & Tavakkoli-Moghaddam, R. & Mohammadi, M. & Jula, P., 2014. "Multi-objective design of an organ transplant network under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 101-124.
    15. Sasan Khalifehzadeh & Mehdi Seifbarghy & Bahman Naderi, 2017. "Solving a fuzzy multi objective model of a production–distribution system using meta-heuristic based approaches," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 95-109, January.
    16. Tsao, Yu-Chung & Thanh, Vo-Van, 2019. "A multi-objective mixed robust possibilistic flexible programming approach for sustainable seaport-dry port network design under an uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 124(C), pages 13-39.
    17. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    18. Ivana Štulec, 2017. "Effectiveness of Weather Derivatives as a Risk Management Tool in Food Retail: The Case of Croatia," IJFS, MDPI, vol. 5(1), pages 1-15, January.
    19. Adefarati, T. & Bansal, R.C., 2019. "Reliability, economic and environmental analysis of a microgrid system in the presence of renewable energy resources," Applied Energy, Elsevier, vol. 236(C), pages 1089-1114.
    20. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.
    21. Hocine, Amine & Kouaissah, Noureddine & Bettahar, Samir & Benbouziane, Mohamed, 2018. "Optimizing renewable energy portfolios under uncertainty: A multi-segment fuzzy goal programming approach," Renewable Energy, Elsevier, vol. 129(PA), pages 540-552.
    22. Wu, Xiaomin & Cao, Weihua & Wang, Dianhong & Ding, Min & Yu, Liangjun & Nakanishi, Yosuke, 2021. "Demand response model based on improved Pareto optimum considering seasonal electricity prices for Dongfushan Island," Renewable Energy, Elsevier, vol. 164(C), pages 926-936.
    23. Cayir Ervural, Beyzanur & Evren, Ramazan & Delen, Dursun, 2018. "A multi-objective decision-making approach for sustainable energy investment planning," Renewable Energy, Elsevier, vol. 126(C), pages 387-402.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xia, Yuanxing & Xu, Qingshan & Li, Fangxing, 2023. "Grid-friendly pricing mechanism for peer-to-peer energy sharing market diffusion in communities," Applied Energy, Elsevier, vol. 334(C).
    2. Siti Nor Azreen Ahmad Termizi & Sharifah Rafidah Wan Alwi & Zainuddin Abd Manan & Petar Sabev Varbanov, 2022. "Potential Application of Blockchain Technology in Eco-Industrial Park Development," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
    3. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Vincent F. & Le, Thi Huynh Anh & Gupta, Jatinder N.D., 2023. "Sustainable microgrid design with peer-to-peer energy trading involving government subsidies and uncertainties," Renewable Energy, Elsevier, vol. 206(C), pages 658-675.
    2. Tsao, Yu-Chung & Thanh, Vo-Van, 2021. "Toward sustainable microgrids with blockchain technology-based peer-to-peer energy trading mechanism: A fuzzy meta-heuristic approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    3. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    4. Liu, Wei & Chau, K.T. & Tian, Xiaoyang & Wang, Hui & Hua, Zhichao, 2023. "Smart wireless power transfer — opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    5. Tan, R.R. & Aviso, K.B. & Ng, D.K.S., 2019. "Optimization models for financing innovations in green energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    7. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    8. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    9. Nguyen, Hai Tra & Safder, Usman & Nhu Nguyen, X.Q. & Yoo, ChangKyoo, 2020. "Multi-objective decision-making and optimal sizing of a hybrid renewable energy system to meet the dynamic energy demands of a wastewater treatment plant," Energy, Elsevier, vol. 191(C).
    10. Miguel Carpintero-Rentería & David Santos-Martín & Josep M. Guerrero, 2019. "Microgrids Literature Review through a Layers Structure," Energies, MDPI, vol. 12(22), pages 1-22, November.
    11. Carlo Fezzi & Luca Mosetti, 2018. "Size matters: Estimation sample length and electricity price forecasting accuracy," DEM Working Papers 2018/10, Department of Economics and Management.
    12. Wang, Zibo & Yu, Xiaodan & Mu, Yunfei & Jia, Hongjie, 2020. "A distributed Peer-to-Peer energy transaction method for diversified prosumers in Urban Community Microgrid System," Applied Energy, Elsevier, vol. 260(C).
    13. Hu, Qian & Zhu, Ziqing & Bu, Siqi & Wing Chan, Ka & Li, Fangxing, 2021. "A multi-market nanogrid P2P energy and ancillary service trading paradigm: Mechanisms and implementations," Applied Energy, Elsevier, vol. 293(C).
    14. Davarzani, Sima & Pisica, Ioana & Taylor, Gareth A. & Munisami, Kevin J., 2021. "Residential Demand Response Strategies and Applications in Active Distribution Network Management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2023. "Blockchain technology for distributed generation: A review of current development, challenges and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    16. Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
    17. Grzegorz Marcjasz & Bartosz Uniejewski & Rafał Weron, 2020. "Beating the Naïve—Combining LASSO with Naïve Intraday Electricity Price Forecasts," Energies, MDPI, vol. 13(7), pages 1-16, April.
    18. Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
    19. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    20. Capper, Timothy & Gorbatcheva, Anna & Mustafa, Mustafa A. & Bahloul, Mohamed & Schwidtal, Jan Marc & Chitchyan, Ruzanna & Andoni, Merlinda & Robu, Valentin & Montakhabi, Mehdi & Scott, Ian J. & Franci, 2022. "Peer-to-peer, community self-consumption, and transactive energy: A systematic literature review of local energy market models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122002556. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.