IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v155y2022ics1364032121012211.html
   My bibliography  Save this article

Evaluating user understanding and exposure effects of demand-based tariffs

Author

Listed:
  • El Gohary, F.
  • Nordin, M.
  • Juslin, P.
  • Bartusch, C.

Abstract

Conventionally, demand response functions by communicating to electricity users through price signals embedded in their tariffs. These signals are intended to encourage a change in behavior, which hinges on the ability of users to understand their tariff and link it to the appropriate curtailment actions. This study focuses on demand-based tariffs, evaluating user's understanding of these tariffs and the conceptual grasp of power (rate of energy consumption) that they implicitly require. It also explores whether users exposed to these tariffs for extended periods develop a better understanding of them. Using a survey, the following points are sequentially evaluated: (1) Respondents' abilities to intuitively distinguish between energy/power (2) Their understanding of the different effects of curtailment actions under four distinct tariffs (3) Whether those subject to demand-based pricing outperform those subject to energy-based pricing. Despite a weaker conceptual understanding of power compared to energy, there were no significant differences between respondents' understanding of energy and demand-based tariffs. Comparing those subject to energy and demand-based pricing reveals that a majority were unaware of their own tariff (and hence which group they fall into), but for the minority of users who correctly identified their own tariffs, those subject to demand-based pricing outperform their energy-based counterparts. When presented with clear and instructive tariffs, respondents are largely able to deduce the consequences of curtailment actions, despite a weak conceptual understanding of power. A deeper problem is that the price signal may be entirely disregarded by an apathetic majority, reaching only an inquisitive minority.

Suggested Citation

  • El Gohary, F. & Nordin, M. & Juslin, P. & Bartusch, C., 2022. "Evaluating user understanding and exposure effects of demand-based tariffs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
  • Handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121012211
    DOI: 10.1016/j.rser.2021.111956
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121012211
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gyamfi, Samuel & Krumdieck, Susan & Urmee, Tania, 2013. "Residential peak electricity demand response—Highlights of some behavioural issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 71-77.
    2. Hainmueller, Jens, 2012. "Entropy Balancing for Causal Effects: A Multivariate Reweighting Method to Produce Balanced Samples in Observational Studies," Political Analysis, Cambridge University Press, vol. 20(1), pages 25-46, January.
    3. Torriti, Jacopo & Hassan, Mohamed G. & Leach, Matthew, 2010. "Demand response experience in Europe: Policies, programmes and implementation," Energy, Elsevier, vol. 35(4), pages 1575-1583.
    4. Schlereth, Christian & Skiera, Bernd & Schulz, Fabian, 2018. "Why do consumers prefer static instead of dynamic pricing plans? An empirical study for a better understanding of the low preferences for time-variant pricing plans," European Journal of Operational Research, Elsevier, vol. 269(3), pages 1165-1179.
    5. Dütschke, Elisabeth & Paetz, Alexandra-Gwyn, 2013. "Dynamic electricity pricing—Which programs do consumers prefer?," Energy Policy, Elsevier, vol. 59(C), pages 226-234.
    6. Bradley, Peter & Coke, Alexia & Leach, Matthew, 2016. "Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider," Energy Policy, Elsevier, vol. 98(C), pages 108-120.
    7. Kim, Jin-Ho & Shcherbakova, Anastasia, 2011. "Common failures of demand response," Energy, Elsevier, vol. 36(2), pages 873-880.
    8. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stikvoort, Britt & El Gohary, Fouad & Nilsson, Anders & Bartusch, Cajsa, 2024. "Serving two masters – How dual price signals can undermine demand flexibility," Energy Policy, Elsevier, vol. 185(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Good, Nicholas & Ellis, Keith A. & Mancarella, Pierluigi, 2017. "Review and classification of barriers and enablers of demand response in the smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 57-72.
    2. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    3. Nakai, Miwa & von Loessl, Victor & Wetzel, Heike, 2024. "Preferences for dynamic electricity tariffs: A comparison of households in Germany and Japan," Ecological Economics, Elsevier, vol. 223(C).
    4. Silva, Hendrigo Batista da & Santiago, Leonardo P., 2018. "On the trade-off between real-time pricing and the social acceptability costs of demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1513-1521.
    5. Sloot, Daniel & Scheibehenne, Benjamin, 2022. "Understanding the financial incentive conundrum: A meta-analysis of the effectiveness of financial incentive interventions in promoting energy conservation behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2022. "Consumer preferences for the design of a demand response quota scheme – Results of a choice experiment in Germany," Energy Policy, Elsevier, vol. 167(C).
    7. Bradley, Peter & Coke, Alexia & Leach, Matthew, 2016. "Financial incentive approaches for reducing peak electricity demand, experience from pilot trials with a UK energy provider," Energy Policy, Elsevier, vol. 98(C), pages 108-120.
    8. Nikolaos Iliopoulos & Motoharu Onuki & Miguel Esteban, 2021. "Shedding Light on the Factors That Influence Residential Demand Response in Japan," Energies, MDPI, vol. 14(10), pages 1-23, May.
    9. Zhou, Kaile & Yang, Shanlin, 2015. "Demand side management in China: The context of China’s power industry reform," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 954-965.
    10. Lopes, Marta A.R. & Henggeler Antunes, Carlos & Janda, Kathryn B. & Peixoto, Paulo & Martins, Nelson, 2016. "The potential of energy behaviours in a smart(er) grid: Policy implications from a Portuguese exploratory study," Energy Policy, Elsevier, vol. 90(C), pages 233-245.
    11. Minseok Jang & Hyun-Cheol Jeong & Taegon Kim & Sung-Kwan Joo, 2021. "Load Profile-Based Residential Customer Segmentation for Analyzing Customer Preferred Time-of-Use (TOU) Tariffs," Energies, MDPI, vol. 14(19), pages 1-12, September.
    12. Bernadeta Gołębiowska, 2020. "Preferences for demand side management—a review of choice experiment studies," Working Papers 2020-05, Faculty of Economic Sciences, University of Warsaw.
    13. Elena Vechkinzova & Yelena Petrenko & Yana S. Matkovskaya & Gaukhar Koshebayeva, 2021. "The Dilemma of Long-Term Development of the Electric Power Industry in Kazakhstan," Energies, MDPI, vol. 14(9), pages 1-21, April.
    14. Martin Spann & Bernd Skiera, 2020. "Dynamische Preisgestaltung in der digitalisierten Welt [Dynamic Pricing in a Digitized World]," Schmalenbach Journal of Business Research, Springer, vol. 72(3), pages 321-342, September.
    15. Krishnendranath Mitra & Goutam Dutta, 2021. "A novel method of market segmentation and market study for dynamic pricing of retail electricity in India: an experimental approach in a university setup," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(2), pages 162-184, April.
    16. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    17. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    18. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    19. Martínez Ceseña, Eduardo A. & Good, Nicholas & Mancarella, Pierluigi, 2015. "Electrical network capacity support from demand side response: Techno-economic assessment of potential business cases for small commercial and residential end-users," Energy Policy, Elsevier, vol. 82(C), pages 222-232.
    20. Patrick Ludwig & Christian Winzer, 2022. "Tariff Menus to Avoid Rebound Peaks: Results from a Discrete Choice Experiment with Swiss Customers," Energies, MDPI, vol. 15(17), pages 1-21, August.
    21. Balta-Ozkan, Nazmiye & Davidson, Rosemary & Bicket, Martha & Whitmarsh, Lorraine, 2013. "The development of smart homes market in the UK," Energy, Elsevier, vol. 60(C), pages 361-372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:155:y:2022:i:c:s1364032121012211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.