IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v148y2021ics1364032121005840.html
   My bibliography  Save this article

Administrative framework barriers to energy storage development in China

Author

Listed:
  • Zhang, M.
  • Yang, X.N.

Abstract

The emergence of energy storage technology as a solution to the variability of renewable energy has prompted great industrial interest from China's electricity sector. As evidenced in China's latest industrial public policy promulgation, Policy Document No. 1701 (Guiding Opinion Promoting Energy Storage Technology and Development Action Plan 2019–2020), significant industrial efforts are underway to create a robust and world-leading energy storage industry. While Document No. 1701 brings much need industry expertise, finance, and attention to China's emerging energy storage industry, the absence of administrative and regulatory considerations within the document raises concerns over the viability of the plan. Specifically, we argue that the current administrative framework over China's electricity sector creates substantive, procedural, and institutional barriers to the commercialization and integration of novel energy storage technologies. However, academic discussions and solutions on industrial issues within China's electricity sector have yet to be critically explored from the viewpoint of China's growing administrative law framework. In this context, we analyze and recommend the creation of quasi-judicial administrative proceedings within the electricity sector for the purposes of administering the generator integration process onto China's national grid system.

Suggested Citation

  • Zhang, M. & Yang, X.N., 2021. "Administrative framework barriers to energy storage development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
  • Handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005840
    DOI: 10.1016/j.rser.2021.111297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121005840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Kun-Chin & Purra, Mika M., 2019. "Transforming China's electricity sector: Politics of institutional change and regulation," Energy Policy, Elsevier, vol. 124(C), pages 401-410.
    2. Xiaoru Zhuang & Xinhai Xu & Wenrui Liu & Wenfu Xu, 2019. "LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China," Energies, MDPI, vol. 12(7), pages 1-17, April.
    3. Yu, Hongwei & Duan, Jinhui & Du, Wei & Xue, Song & Sun, Jinghui, 2017. "China's energy storage industry: Develop status, existing problems and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 767-784.
    4. Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
    5. Lin, Li-Wen, 2017. "A Network Anatomy of Chinese State-Owned Enterprises," World Trade Review, Cambridge University Press, vol. 16(4), pages 583-600, October.
    6. Qi, Ye & Dong, Wenjuan & Dong, Changgui & Huang, Caiwei, 2019. "Understanding institutional barriers for wind curtailment in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 476-486.
    7. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    8. Geoffrey C. Chen & Charles Lees, 2016. "Growing China’s renewables sector: a developmental state approach," New Political Economy, Taylor & Francis Journals, vol. 21(6), pages 574-586, November.
    9. Kyriakopoulos, Grigorios L. & Arabatzis, Garyfallos, 2016. "Electrical energy storage systems in electricity generation: Energy policies, innovative technologies, and regulatory regimes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1044-1067.
    10. Yang, Fei-fei & Zhao, Xin-gang, 2018. "Policies and economic efficiency of China's distributed photovoltaic and energy storage industry," Energy, Elsevier, vol. 154(C), pages 221-230.
    11. Fu, Tong & Jian, Ze, 2020. "A developmental state: How to allocate electricity efficiently in a developing country," Energy Policy, Elsevier, vol. 138(C).
    12. Guoliang Luo & Erli Dan & Xiaochun Zhang & Yiwei Guo, 2018. "Why the Wind Curtailment of Northwest China Remains High," Sustainability, MDPI, vol. 10(2), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng, Ming & Pang, Tingting, 2022. "Operational efficiency analysis of China's electric power industry using a dynamic network slack-based measure model," Energy, Elsevier, vol. 251(C).
    2. Max Zhang & Xiaonan Yang, 2022. "The Regulatory Perspectives to China’s Emerging Hydrogen Economy: Characteristics, Challenges, and Solutions," Sustainability, MDPI, vol. 14(15), pages 1-20, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Feng & Yu, Zichao & Zhuang, Weiting & Lu, Ao, 2021. "The institutional logic of wind energy integration: What can China learn from the United States to reduce wind curtailment?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Warner, Kevin J. & Jones, Glenn A., 2017. "A population-induced renewable energy timeline in nine world regions," Energy Policy, Elsevier, vol. 101(C), pages 65-76.
    3. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    4. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    5. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    6. Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
    7. Shuo Zhang & Li Chen & Yidan Zheng & Yingzi Li & Ying Li & Ming Zeng, 2021. "How Policies Guide and Promoted Wind Power to Market Transactions in China during the 2010s," Energies, MDPI, vol. 14(14), pages 1-24, July.
    8. Boonstra, Boris C. & Oosterlee, Cornelis W., 2021. "Valuation of electricity storage contracts using the COS method," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    9. Li, Longxi & Cao, Xilin, 2022. "Comprehensive effectiveness assessment of energy storage incentive mechanisms for PV-ESS projects based on compound real options," Energy, Elsevier, vol. 239(PA).
    10. Fantauzzi, M. & Lauria, D. & Mottola, F. & Scalfati, A., 2017. "Sizing energy storage systems in DC networks: A general methodology based upon power losses minimization," Applied Energy, Elsevier, vol. 187(C), pages 862-872.
    11. Jurasz, Jakub & Ciapała, Bartłomiej, 2017. "Integrating photovoltaics into energy systems by using a run-off-river power plant with pondage to smooth energy exchange with the power gird," Applied Energy, Elsevier, vol. 198(C), pages 21-35.
    12. Papadopoulos, Agis M., 2020. "Renewable energies and storage in small insular systems: Potential, perspectives and a case study," Renewable Energy, Elsevier, vol. 149(C), pages 103-114.
    13. Kakran, Sandeep & Chanana, Saurabh, 2018. "Smart operations of smart grids integrated with distributed generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 524-535.
    14. Stavros Lazarou & Sofoklis Makridis, 2017. "Hydrogen Storage Technologies for Smart Grid Applications," Challenges, MDPI, vol. 8(1), pages 1-11, June.
    15. Tong, Zheming & Cheng, Zhewu & Tong, Shuiguang, 2021. "A review on the development of compressed air energy storage in China: Technical and economic challenges to commercialization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Li, Aitong & Sun, Ying & Song, Xiaobin, 2023. "Gradual improvement and reactive intervention: China's policy pathway for developing the wind power industry," Renewable Energy, Elsevier, vol. 216(C).
    17. Haupt, Leon & Schöpf, Michael & Wederhake, Lars & Weibelzahl, Martin, 2020. "The influence of electric vehicle charging strategies on the sizing of electrical energy storage systems in charging hub microgrids," Applied Energy, Elsevier, vol. 273(C).
    18. Chong, Lee Wai & Wong, Yee Wan & Rajkumar, Rajprasad Kumar & Rajkumar, Rajpartiban Kumar & Isa, Dino, 2016. "Hybrid energy storage systems and control strategies for stand-alone renewable energy power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 174-189.
    19. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    20. Daniel Akinyele & Juri Belikov & Yoash Levron, 2017. "Battery Storage Technologies for Electrical Applications: Impact in Stand-Alone Photovoltaic Systems," Energies, MDPI, vol. 10(11), pages 1-39, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:148:y:2021:i:c:s1364032121005840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.