IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v144y2021ics1364032121002586.html
   My bibliography  Save this article

A review of international limits for rapid voltage changes in public distribution networks

Author

Listed:
  • Barros, Julio
  • de Apráiz, Matilde
  • Diego, Ramón I.

Abstract

A rapid voltage change (RVC) is a type of commonly occurring voltage fluctuation in low-voltage and medium-voltage distribution networks, normally associated with switching operations, which can affect the performance of equipment and can also produce flicker. The magnitude and frequency of occurrence of RVCs are both limited in the international standards to guarantee the correct operation of power networks and to avoid excessive flicker. This paper presents a critical review of the existing limits defined in the most important international standards on rapid voltage changes for low-voltage and medium-voltage public distribution networks, whose number is expected to grow significantly associated with the switching operations of the control equipment of distributed energy sources in power system networks, highlighting some of their shortcomings as well as the necessity of new indices for better characterization of these events.

Suggested Citation

  • Barros, Julio & de Apráiz, Matilde & Diego, Ramón I., 2021. "A review of international limits for rapid voltage changes in public distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
  • Handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002586
    DOI: 10.1016/j.rser.2021.110966
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121002586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.110966?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefano Lodetti & Izaskun Azcarate & José Julio Gutiérrez & Luis Alberto Leturiondo & Koldo Redondo & Purificación Sáiz & Julio J. Melero & Jorge Bruna, 2019. "Flicker of Modern Lighting Technologies Due to Rapid Voltage Changes," Energies, MDPI, vol. 12(5), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Polat, Onder & Gul, Omer, 2022. "Development of a probabilistic short-term voltage quality assessment method with the weak point detection capability through the dynamic analyses," Applied Energy, Elsevier, vol. 326(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zbigniew Łukasik & Zbigniew Olczykowski, 2020. "Estimating the Impact of Arc Furnaces on the Quality of Power in Supply Systems," Energies, MDPI, vol. 13(6), pages 1-30, March.
    2. Calin Ciugudeanu & Mircea Buzdugan & Dorin Beu & Angel Campianu & Catalin Daniel Galatanu, 2019. "Sustainable Lighting-Retrofit Versus Dedicated Luminaires-Light Versus Power Quality," Sustainability, MDPI, vol. 11(24), pages 1-15, December.
    3. Haitao Gao & Peng Xu & Jin Tao & Shihui Huang & Rugang Wang & Quan Zhou, 2020. "Voltage Flicker Detection Based on Probability Resampling," Energies, MDPI, vol. 13(13), pages 1-12, June.
    4. Naveed Ashraf & Ghulam Abbas & Ali Raza & Nasim Ullah & Alsharef Mohammad & Mohamed Emad Farrag, 2022. "A Single-Phase Compact-Sized Matrix Converter with Symmetrical Bipolar Buck and Boost Output Voltage Control," Energies, MDPI, vol. 15(20), pages 1-20, October.
    5. Julio Barros, 2022. "New Power Quality Measurement Techniques and Indices in DC and AC Networks," Energies, MDPI, vol. 15(23), pages 1-3, December.
    6. Paolo Castello & Carlo Muscas & Paolo Attilio Pegoraro & Sara Sulis, 2019. "PMU’s Behavior with Flicker-Generating Voltage Fluctuations: An Experimental Analysis," Energies, MDPI, vol. 12(17), pages 1-14, August.
    7. Zbigniew Olczykowski & Zbigniew Łukasik, 2021. "Evaluation of Flicker of Light Generated by Arc Furnaces," Energies, MDPI, vol. 14(13), pages 1-23, June.
    8. Andrej Orgulan & Primož Sukič & Janez Ribič, 2019. "A Procedure for Mitigating the Light Flicker in Office LED Lighting Caused by Voltage Fluctuations," Energies, MDPI, vol. 12(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:144:y:2021:i:c:s1364032121002586. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.