IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v9y1996i1p836-847.html
   My bibliography  Save this article

Hybrid wind/PV/diesel hybrid power systems modeling and South American applications

Author

Listed:
  • McGowan, J.G.
  • Manwell, J.F.
  • Avelar, C.
  • Warner, C.L.

Abstract

This paper presents an applications case study and comparison of performance results between two computational models for simulating the performance of hybrid power systems. The first model, HYBRID2, was developed at the University of Massachusetts under National Renewable Energy Laboratory (NREL) sponsorship. The second model, SOMES, was developed at Utrecht University in the Netherlands. Both models have been designed to predict the technical and economical (life cycle cost) performance of hybrid power plants that typically might be comprised of renewable energy sources, a battery bank, and a diesel generator. A South American (Brazil) based hybrid power system used to power a remote telecommunications system was used for the applications case study. A final system configuration be used as a basis for model prediction comparison was established as a result of HYBRID2 parametric evaluation. Both codes yielded similar performance results, and this work points out that the predicted performance discrepancies are due basically to different subcomponent models and differences in control strategy. The generalized nature of this work is intended to be of interest to engineers involved with the design and analysis of hybrid power systems.

Suggested Citation

  • McGowan, J.G. & Manwell, J.F. & Avelar, C. & Warner, C.L., 1996. "Hybrid wind/PV/diesel hybrid power systems modeling and South American applications," Renewable Energy, Elsevier, vol. 9(1), pages 836-847.
  • Handle: RePEc:eee:renene:v:9:y:1996:i:1:p:836-847
    DOI: 10.1016/0960-1481(96)88412-6
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0960148196884126
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(96)88412-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    2. Khalilpour, Kaveh Rajab & Vassallo, Anthony, 2016. "A generic framework for distributed multi-generation and multi-storage energy systems," Energy, Elsevier, vol. 114(C), pages 798-813.
    3. Yu Niu & Yingying Xiong & Lin Chai & Zhiqian Wang & Linbin Li & Congxiu Guo & Qiulin Wang & Xuhui Wang & Yuqi Wang, 2024. "Explorations of Integrated Multi-Energy Strategy under Energy Simulation by DeST 3.0: A Case Study of College Dining Hall," Sustainability, MDPI, vol. 16(14), pages 1-18, July.
    4. Weisser, Daniel, 2004. "On the economics of electricity consumption in small island developing states: a role for renewable energy technologies?," Energy Policy, Elsevier, vol. 32(1), pages 127-140, January.
    5. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    6. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2008. "Feasibility analysis of stand-alone renewable energy supply options for a large hotel," Renewable Energy, Elsevier, vol. 33(7), pages 1475-1490.
    7. Weinand, Jann Michael & Scheller, Fabian & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Energy, Elsevier, vol. 203(C).
    8. Deshmukh, M.K. & Deshmukh, S.S., 2008. "Modeling of hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 235-249, January.
    9. He, Yaoyao & Hong, Xiaoyu & Wang, Chao & Qin, Hui, 2023. "Optimal capacity configuration of the hydro-wind-photovoltaic complementary system considering cascade reservoir connection," Applied Energy, Elsevier, vol. 352(C).
    10. Bernal-Agustín, José L. & Dufo-López, Rodolfo & Rivas-Ascaso, David M., 2006. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 31(14), pages 2227-2244.
    11. Dalton, G.J. & Lockington, D.A. & Baldock, T.E., 2007. "A survey of tourist operator attitudes to renewable energy supply in Queensland, Australia," Renewable Energy, Elsevier, vol. 32(4), pages 567-586.
    12. Bernal-Agustín, José L. & Dufo-López, Rodolfo, 2009. "Simulation and optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2111-2118, October.
    13. Margaret Amutha, W. & Rajini, V., 2015. "Techno-economic evaluation of various hybrid power systems for rural telecom," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 553-561.
    14. Katsaprakakis, Dimitris Al & Thomsen, Bjarti & Dakanali, Irini & Tzirakis, Kostas, 2019. "Faroe Islands: Towards 100% R.E.S. penetration," Renewable Energy, Elsevier, vol. 135(C), pages 473-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:9:y:1996:i:1:p:836-847. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.