IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v99y2016icp437-442.html
   My bibliography  Save this article

Methanol dehydrogenation and oxidation on Pt1–XNiX/CNTs at low temperature: Effect of Ni addition

Author

Listed:
  • Rodriguez, J.R.
  • Fuentes Moyado, S.
  • Oropeza-Guzman, M.T.
  • Aguirre, S.B.
  • Romo-Herrera, José
  • Huirache-Acuña, R.
  • Berhault, G.
  • Alonso-Núñez, G.

Abstract

This study reports the effect on catalytic activity resulting from Ni incorporation in Pt nanoparticles supported on carbon nanotubes (CNTs) for electrochemical methanol oxidation at low temperature in acidic conditions. Chemical composition, morphology and structure of the Pt1–XNiX/CNTs (X = 0, 0.1, 0.2, 0.3, 0.4, 0.5) catalysts were studied by EDS, SEM, XRD, TEM and TGA. The catalytic activity of the prepared materials in methanol electro-oxidation reaction was investigated by cyclic voltammetry (CV) and chronoamperometry (CA). The results of catalytic activity of the nanostructured materials showed a volcano-type relationship between the Ni relative concentration current density. The enhancement of catalytic activity was attributed to changes in surface electronic structure of Pt nanoparticles that impacted in an increment of active sites for methanol dehydrogenation and oxidation processes. On the other hand, high concentration of Ni (concentration ≥ 30 at.%) in Pt nanoparticles caused a substantial decrease of the catalytic activity due to a depletion of active sites for the methanol dehydrogenation process. The highest catalytic activity was observed when the Ni relative concentration reaches 30 at.%.

Suggested Citation

  • Rodriguez, J.R. & Fuentes Moyado, S. & Oropeza-Guzman, M.T. & Aguirre, S.B. & Romo-Herrera, José & Huirache-Acuña, R. & Berhault, G. & Alonso-Núñez, G., 2016. "Methanol dehydrogenation and oxidation on Pt1–XNiX/CNTs at low temperature: Effect of Ni addition," Renewable Energy, Elsevier, vol. 99(C), pages 437-442.
  • Handle: RePEc:eee:renene:v:99:y:2016:i:c:p:437-442
    DOI: 10.1016/j.renene.2016.07.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116306280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.07.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Félix-Navarro, R.M. & Beltrán-Gastélum, M. & Reynoso-Soto, E.A. & Paraguay-Delgado, F. & Alonso-Nuñez, G. & Flores-Hernández, J.R., 2016. "Bimetallic Pt–Au nanoparticles supported on multi-wall carbon nanotubes as electrocatalysts for oxygen reduction," Renewable Energy, Elsevier, vol. 87(P1), pages 31-41.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohideen, Mohamedazeem M. & Liu, Yong & Ramakrishna, Seeram, 2020. "Recent progress of carbon dots and carbon nanotubes applied in oxygen reduction reaction of fuel cell for transportation," Applied Energy, Elsevier, vol. 257(C).
    2. Jiajun Zhao & Cehuang Fu & Ke Ye & Zheng Liang & Fangling Jiang & Shuiyun Shen & Xiaoran Zhao & Lu Ma & Zulipiya Shadike & Xiaoming Wang & Junliang Zhang & Kun Jiang, 2022. "Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Beltrán-Gastélum, M. & Salazar-Gastélum, M.I. & Flores-Hernández, J.R. & Botte, G.G. & Pérez-Sicairos, S. & Romero-Castañon, T. & Reynoso-Soto, E. & Félix-Navarro, R.M., 2019. "Pt-Au nanoparticles on graphene for oxygen reduction reaction: Stability and performance on proton exchange membrane fuel cell," Energy, Elsevier, vol. 181(C), pages 1225-1234.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:99:y:2016:i:c:p:437-442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.