IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v98y2016icp16-22.html
   My bibliography  Save this article

A novel staggered hybrid SSF approach for efficient conversion of cellulose/hemicellulosic fractions of corncob into ethanol

Author

Listed:
  • Brar, K.K.
  • Kaur, Satindar
  • Chadha, B.S.

Abstract

The following study reports bioconversion of corncob into ethanol using hybrid approach for co-utilization of dilute acid hydrolysate (pentose rich stream) and hexose rich stream obtained by enzymatic saccharification employing commercial cellulase Cellic CTec2 as well as in-house cellulase preparations derived from Malbranchea cinnamomea, Scytalidium thermophilium and a recombinant Aspergillus strain. Acid hydrolysis (1% H2SO4) of corncob at 1:15 solid liquid ratio led to removal of 80.5% of hemicellulosic fraction. The solid glucan rich fraction (63.5% glucan, 8.3% pentosans and 27.9% lignin) was hydrolysed at 10% substrate loading rate with different enzymes for 72 h at 50 °C resulting in release of 732 and 535 (mg/g substrate) total sugars by Cellic CTec2 and M. cinnamomea derived enzymes, respectively. The fermentation of enzyme hydrolysate with co-culture of Saccharomyces cerevisiae and Pichia stipitis added in sequential manner resulted in 3.42 and 2.50% (v/v) ethanol in hydrolysate obtained from commercial Cellic CTec2 and M. cinnamomea, respectively. Employing a hybrid approach, where dilute acid hydrolysate stream was added to solid residue along with enzyme Cellic CTec2 during staggered simultaneous saccharification and fermentation at substrate loading rate of 15% resulted in 252 g ethanol/kg corncob.

Suggested Citation

  • Brar, K.K. & Kaur, Satindar & Chadha, B.S., 2016. "A novel staggered hybrid SSF approach for efficient conversion of cellulose/hemicellulosic fractions of corncob into ethanol," Renewable Energy, Elsevier, vol. 98(C), pages 16-22.
  • Handle: RePEc:eee:renene:v:98:y:2016:i:c:p:16-22
    DOI: 10.1016/j.renene.2016.03.082
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811630266X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.03.082?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lopes, Verônica dos Santos & Fischer, Janaína & Pinheiro, Tais Magalhães Abrantes & Cabral, Bruna Vieira & Cardoso, Vicelma Luiz & Coutinho Filho, Ubirajara, 2017. "Biosurfactant and ethanol co-production using Pseudomonas aeruginosa and Saccharomyces cerevisiae co-cultures and exploded sugarcane bagasse," Renewable Energy, Elsevier, vol. 109(C), pages 305-310.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:98:y:2016:i:c:p:16-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.