IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v93y2016icp228-244.html
   My bibliography  Save this article

A surface-layer wind speed correction: A case-study of Darling station

Author

Listed:
  • Olaofe, Zaccheus O.

Abstract

In previous study, the vertical wind speed extrapolation from measurement station to modern turbine hubs over an open homogenous terrain was considered. It was presented that an assumption of wind shear exponent under different stability conditions was an inaccurate representation of the actual wind climates as the precise knowledge of the site's wind characteristics at different levels and seasons are essential for planning and implementation of a proposed energy project. In this study, the surface-layer wind speed correction at Darling using the WRF modeling with mesoscale terrain corrections is presented. An hourly mesoscale modeled winds at 3 km grid spacing obtained for one month are postprocessed for estimation of local wind speed profiles at 10 and 50 m height AGL. The sensitivity of the modeled winds to surface terrain corrections is investigated using mesoscale topography parameterizations. Furthermore, 6-hourly mesoscale modeled and satellite observed winds as well as measurements from Darling station are utilized for validation of the statistical downscaling method utilized for the postprocessing of the boundary layer winds over land. It is presented that the precision of the mesoscale modeled winds for local wind speed estimates at potential site without historical measurements can be significantly improved. The confidence in the validity of this methodology for local wind speed correction is estimated at 96–98%.

Suggested Citation

  • Olaofe, Zaccheus O., 2016. "A surface-layer wind speed correction: A case-study of Darling station," Renewable Energy, Elsevier, vol. 93(C), pages 228-244.
  • Handle: RePEc:eee:renene:v:93:y:2016:i:c:p:228-244
    DOI: 10.1016/j.renene.2016.02.055
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116301562
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.02.055?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Shuang & Vautard, Robert, 2022. "A transfer method to estimate hub-height wind speed from 10 meters wind speed based on machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Tuchtenhagen, Patrícia & Carvalho, Gilvani Gomes de & Martins, Guilherme & Silva, Pollyanne Evangelista da & Oliveira, Cristiano Prestrelo de & de Melo Barbosa Andrade, Lara & Araújo, João Medeiros de, 2020. "WRF model assessment for wind intensity and power density simulation in the southern coast of Brazil," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:93:y:2016:i:c:p:228-244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.