IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp602-610.html
   My bibliography  Save this article

Applying the kriging method to predicting irradiance variability at a potential PV power plant

Author

Listed:
  • Monger, Samuel H.
  • Morgan, Eric R.
  • Dyreson, Ana R.
  • Acker, Thomas L.

Abstract

One-second irradiance data from forty-five sensors spaced over a one-mile square section of land were analyzed to characterize the short-term (1-s to 1-min) variability of the solar resource in Northern Arizona. The geostatistical interpolation model known as kriging was applied to our data set to better understand the method's strengths and weaknesses in accurately predicting the variations in the irradiance over this relatively small section of land. Of particular interest was to investigate the ability of the kriging method to show the variation in solar irradiance over the section of land as compared to that measured by the sensors. When using data from all the sensors as input to the prediction method, kriging performed very well compared to the sensors. However, because it is unlikely to have a large number of sensors to characterize the variability at a prospective solar site, it was also of interest to investigate how many sensors are required as input to the kriging technique in order to generate a reliable prediction. Solar data from four characteristic periods (related to the four seasons) were analyzed, and different sensor configurations, consisting of subsets of the actual sensor array, were employed using the method to demonstrate the number of sensors required to correctly characterize the short-term irradiance variability at the site. Using four measurement stations as input to the kriging method was shown to reasonably represent the variability in the 1-s to 1-min timescales.

Suggested Citation

  • Monger, Samuel H. & Morgan, Eric R. & Dyreson, Ana R. & Acker, Thomas L., 2016. "Applying the kriging method to predicting irradiance variability at a potential PV power plant," Renewable Energy, Elsevier, vol. 86(C), pages 602-610.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:602-610
    DOI: 10.1016/j.renene.2015.08.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302585
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Habte, Aron & Sengupta, Manajit & Gueymard, Christian & Golnas, Anastasios & Xie, Yu, 2020. "Long-term spatial and temporal solar resource variability over America using the NSRDB version 3 (1998–2017)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:602-610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.