IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp251-256.html
   My bibliography  Save this article

Grey Predictor reference model for assisting particle swarm optimization for wind turbine control

Author

Listed:
  • Hodzic, Migdat
  • Tai, Li-Chou

Abstract

This paper proposes an approach of forming the average performance by Grey Modeling, and use an average performance as reference model for performing evolutionary computation with error type control performance index. The idea of the approach is to construct the reference model based on the performance of unknown systems when users apply evolutionary computation to fine-tune the control systems with error type performance index. We apply this approach to particle swarm optimization for searching the optimal gains of baseline PI controller of wind turbines operating at the certain set point in Region 3. In the numerical simulation part, the corresponding results demonstrate the effectiveness of Grey Modeling.

Suggested Citation

  • Hodzic, Migdat & Tai, Li-Chou, 2016. "Grey Predictor reference model for assisting particle swarm optimization for wind turbine control," Renewable Energy, Elsevier, vol. 86(C), pages 251-256.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:251-256
    DOI: 10.1016/j.renene.2015.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302019
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ernesto Chavero-Navarrete & Mario Trejo-Perea & Juan-Carlos Jáuregui-Correa & Roberto-Valentín Carrillo-Serrano & José-Gabriel Rios-Moreno, 2019. "Pitch Angle Optimization by Intelligent Adjusting the Gains of a PI Controller for Small Wind Turbines in Areas with Drastic Wind Speed Changes," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    2. Baniassadi, Amir & Shirinbakhsh, Mehrdad & Torabi, Farschad, 2017. "Multivariate optimization of off-grid wind turbines with variable demand - Case study of a remote commercial building," Renewable Energy, Elsevier, vol. 101(C), pages 1021-1029.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:251-256. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.