IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v83y2015icp55-60.html
   My bibliography  Save this article

Universal analytical solution to the optimum load of the solar cell

Author

Listed:
  • Zhang, Zhongzheng
  • Ji, Yun
  • Cheng, Xiaofang
  • Zeng, Li

Abstract

Accurate performance model of solar cells is very crucial for embedded power applications. At low irradiance levels, the two-diode model for PV model is well known for its excellent accuracy. Using the two-diode model, we provide the generic expression of the optimum load RmL which holds for both the single-diode and two-diode model. Also, we obtain an explicit solution based on elementary analytical functions to seek the optimum diode-voltage VmD using dichotomy method. Furthermore, the values of Im and RmL can be calculated based on the explicit expression of Im and RmL in terms of VmD. However, the computation for RmL is difficult, so we create a user-friendly program by Matlab/GUI to make it easier. As predicted, the results computed by the proposed method agree well with the experimental data of four real solar cells. Finally, the impacts of the series and shunt resistance on the optimum load are studied. It turns out that the results of the single-diode model in literature have the same tendency as that of the two-diode model.

Suggested Citation

  • Zhang, Zhongzheng & Ji, Yun & Cheng, Xiaofang & Zeng, Li, 2015. "Universal analytical solution to the optimum load of the solar cell," Renewable Energy, Elsevier, vol. 83(C), pages 55-60.
  • Handle: RePEc:eee:renene:v:83:y:2015:i:c:p:55-60
    DOI: 10.1016/j.renene.2015.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115002864
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    2. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    2. Humada, Ali M. & Hojabri, Mojgan & Mekhilef, Saad & Hamada, Hussein M., 2016. "Solar cell parameters extraction based on single and double-diode models: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 494-509.
    3. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    4. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    5. Ghani, F. & Rosengarten, G. & Duke, M. & Carson, J.K., 2014. "The numerical calculation of single-diode solar-cell modelling parameters," Renewable Energy, Elsevier, vol. 72(C), pages 105-112.
    6. Koohi-Kamalі, Sam & Rahim, N.A. & Mokhlis, H. & Tyagi, V.V., 2016. "Photovoltaic electricity generator dynamic modeling methods for smart grid applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 131-172.
    7. Huang, Chao & Bensoussan, Alain & Edesess, Michael & Tsui, Kwok L., 2016. "Improvement in artificial neural network-based estimation of grid connected photovoltaic power output," Renewable Energy, Elsevier, vol. 97(C), pages 838-848.
    8. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    9. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    10. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    11. Uche, J. & Círez, F. & Bayod, A.A. & Martínez, A., 2013. "On-grid and off-grid batch-ED (electrodialysis) process: Simulation and experimental tests," Energy, Elsevier, vol. 57(C), pages 44-54.
    12. Aurel Gontean & Septimiu Lica & Szilard Bularka & Roland Szabo & Dan Lascu, 2017. "A Novel High Accuracy PV Cell Model Including Self Heating and Parameter Variation," Energies, MDPI, vol. 11(1), pages 1-21, December.
    13. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    14. Jiang, Lian Lian & Maskell, Douglas L. & Patra, Jagdish C., 2013. "Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm," Applied Energy, Elsevier, vol. 112(C), pages 185-193.
    15. Chen, Xiang & Ding, Kun & Yang, Hang & Chen, Xihui & Zhang, Jingwei & Jiang, Meng & Gao, Ruiguang & Liu, Zengquan, 2023. "Research on real-time identification method of model parameters for the photovoltaic array," Applied Energy, Elsevier, vol. 342(C).
    16. Piliougine, Michel & Elizondo, David & Mora-López, Llanos & Sidrach-de-Cardona, Mariano, 2013. "Multilayer perceptron applied to the estimation of the influence of the solar spectral distribution on thin-film photovoltaic modules," Applied Energy, Elsevier, vol. 112(C), pages 610-617.
    17. Ghanim, Marrwa S. & Farhan, Ammar A., 2023. "Projected patterns of climate change impact on photovoltaic energy potential: A case study of Iraq," Renewable Energy, Elsevier, vol. 204(C), pages 338-346.
    18. Bonanno, F. & Capizzi, G. & Graditi, G. & Napoli, C. & Tina, G.M., 2012. "A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module," Applied Energy, Elsevier, vol. 97(C), pages 956-961.
    19. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    20. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:83:y:2015:i:c:p:55-60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.