IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp184-189.html
   My bibliography  Save this article

Biogas upgrading using MSWI bottom ash: An integrated municipal solid waste management

Author

Listed:
  • del Valle-Zermeño, R.
  • Romero-Güiza, M.S.
  • Chimenos, J.M.
  • Formosa, J.
  • Mata-Alvarez, J.
  • Astals, S.

Abstract

Biogas upgrading using bottom ash from the incineration of municipal solid waste (MSW) is especially interesting for integrated treatment facilities as it would allow closing a complete loop in MSW management. The aim of this research was to assess the interaction between bottom ash (BA) and biogas from anaerobic digestion with the outlook of upgrading in terms of CO2 and H2S removal, with particle size and bottom ash aging as the main variables. The finest fraction of fresh bottom ash (FBA) presented the best performance, with a sorption capacity of 30–50 kg CO2·t−1 dry FBA. The sorption capacity of weathered bottom ash (WBA) was lower than the recorded for the fresh material. From the results obtained it can be stated that the CO2 absorption capacity of bottom ash mainly relies in the finest fraction because of its larger surface area and higher CaO content. In what respect to H2S sorption capacity, WBA presented a better performance, with values ranging 3.1–5.2 kg H2S∙t−1 dry WBA. In addition to the energetic enhancement, the proposed technology also allows an immediate stabilization and reuse of bottom ash as the leaching of heavy metals and metalloids remained under regulatory limits.

Suggested Citation

  • del Valle-Zermeño, R. & Romero-Güiza, M.S. & Chimenos, J.M. & Formosa, J. & Mata-Alvarez, J. & Astals, S., 2015. "Biogas upgrading using MSWI bottom ash: An integrated municipal solid waste management," Renewable Energy, Elsevier, vol. 80(C), pages 184-189.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:184-189
    DOI: 10.1016/j.renene.2015.02.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000968
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Yucheng & Pawłowski, Artur, 2012. "Sewage sludge-to-energy approaches based on anaerobic digestion and pyrolysis: Brief overview and energy efficiency assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1657-1665.
    2. Charles H. K. Lam & Alvin W. M. Ip & John Patrick Barford & Gordon McKay, 2010. "Use of Incineration MSW Ash: A Review," Sustainability, MDPI, vol. 2(7), pages 1-26, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulina Rusanowska & Marcin Zieliński & Marcin Dębowski, 2023. "Removal of CO 2 from Biogas during Mineral Carbonation with Waste Materials," IJERPH, MDPI, vol. 20(9), pages 1-10, April.
    2. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    3. Lombardi, L. & Carnevale, E.A., 2016. "Analysis of an innovative process for landfill gas quality improvement," Energy, Elsevier, vol. 109(C), pages 1107-1117.
    4. Zhang, Quanguo & Hu, Jianjun & Lee, Duu-Jong, 2016. "Biogas from anaerobic digestion processes: Research updates," Renewable Energy, Elsevier, vol. 98(C), pages 108-119.
    5. Dou, Xiaomin & Ren, Fei & Nguyen, Minh Quan & Ahamed, Ashiq & Yin, Ke & Chan, Wei Ping & Chang, Victor Wei-Chung, 2017. "Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 24-38.
    6. Juan Félix González & Carmen María Álvez-Medina & Sergio Nogales-Delgado, 2023. "Biogas Steam Reforming in Wastewater Treatment Plants: Opportunities and Challenges," Energies, MDPI, vol. 16(17), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jayne Lois San Juan & Carlo James Caligan & Maria Mikayla Garcia & Jericho Mitra & Andres Philip Mayol & Charlle Sy & Aristotle Ubando & Alvin Culaba, 2020. "Multi-Objective Optimization of an Integrated Algal and Sludge-Based Bioenergy Park and Wastewater Treatment System," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    2. Shahbeig, Hossein & Nosrati, Mohsen, 2020. "Pyrolysis of municipal sewage sludge for bioenergy production: Thermo-kinetic studies, evolved gas analysis, and techno-socio-economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Fabio Merzari & Jillian Goldfarb & Gianni Andreottola & Tanja Mimmo & Maurizio Volpe & Luca Fiori, 2020. "Hydrothermal Carbonization as a Strategy for Sewage Sludge Management: Influence of Process Withdrawal Point on Hydrochar Properties," Energies, MDPI, vol. 13(11), pages 1-22, June.
    4. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    5. Katinas, Vladislovas & Marčiukaitis, Mantas & Perednis, Eugenijus & Dzenajavičienė, Eugenija Farida, 2019. "Analysis of biodegradable waste use for energy generation in Lithuania," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 559-567.
    6. Abdel daiem, Mahmoud M. & Hatata, Ahmed & Galal, Osama H. & Said, Noha & Ahmed, Dalia, 2021. "Prediction of biogas production from anaerobic co-digestion of waste activated sludge and wheat straw using two-dimensional mathematical models and an artificial neural network," Renewable Energy, Elsevier, vol. 178(C), pages 226-240.
    7. Syed-Hassan, Syed Shatir A. & Wang, Yi & Hu, Song & Su, Sheng & Xiang, Jun, 2017. "Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 888-913.
    8. Magdalena Bogacka & Nikolina Poranek & Beata Łaźniewska-Piekarczyk & Krzysztof Pikoń, 2020. "Removal of Pollutants from Secondary Waste from an Incineration Plant: The Review of Methods," Energies, MDPI, vol. 13(23), pages 1-17, November.
    9. Luo, Juan & Ma, Rui & Lin, Junhao & Sun, Shichang & Gong, Guojin & Sun, Jiaman & Chen, Yi & Ma, Ning, 2023. "Review of microwave pyrolysis of sludge to produce high quality biogas: Multi-perspectives process optimization and critical issues proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    11. Peng Xu & Qingliang Zhao & Wei Qiu & Yan Xue & Na Li, 2019. "Microstructure and Strength of Alkali-Activated Bricks Containing Municipal Solid Waste Incineration (MSWI) Fly Ash Developed as Construction Materials," Sustainability, MDPI, vol. 11(5), pages 1-12, March.
    12. Takata, Miki & Fukushima, Kazuyo & Kawai, Minako & Nagao, Norio & Niwa, Chiaki & Yoshida, Teruaki & Toda, Tatsuki, 2013. "The choice of biological waste treatment method for urban areas in Japan—An environmental perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 557-567.
    13. Chen, Renjie & Yu, Xiaoqing & Dong, Bin & Dai, Xiaohu, 2020. "Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): Energy efficiency assessment and pyrolysis kinetics analysis," Energy, Elsevier, vol. 190(C).
    14. Maria Bostenaru Dan & Magdalena Maria Bostenaru-Dan, 2021. "Greening the Brownfields of Thermal Power Plants in Rural Areas, an Example from Romania, Set in the Context of Developments in the Industrialized Country of Germany," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    15. Ju-Hyoung Park & Min-Ho Jin & Young-Joo Lee & Gyu-Seob Song & Jong Won Choi & Dong-Wook Lee & Young-Chan Choi & Se-Joon Park & Kwang Ho Song & Joeng-Geun Kim, 2019. "Two-in-One Fuel Synthetic Bioethanol-Lignin from Lignocellulose with Sewage Sludge and Its Air Pollutants Reduction Effects," Energies, MDPI, vol. 12(16), pages 1-15, August.
    16. Qiu, L. & Deng, Y.F. & Wang, F. & Davaritouchaee, M. & Yao, Y.Q., 2019. "A review on biochar-mediated anaerobic digestion with enhanced methane recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    17. Shahbeik, Hossein & Rafiee, Shahin & Shafizadeh, Alireza & Jeddi, Dorsa & Jafary, Tahereh & Lam, Su Shiung & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2022. "Characterizing sludge pyrolysis by machine learning: Towards sustainable bioenergy production from wastes," Renewable Energy, Elsevier, vol. 199(C), pages 1078-1092.
    18. Havukainen, J. & Uusitalo, V. & Niskanen, A. & Kapustina, V. & Horttanainen, M., 2014. "Evaluation of methods for estimating energy performance of biogas production," Renewable Energy, Elsevier, vol. 66(C), pages 232-240.
    19. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    20. Estefani Rondón Toro & Ana López Martínez & Amaya Lobo García de Cortázar, 2023. "Sequential Methodology for the Selection of Municipal Waste Treatment Alternatives Applied to a Case Study in Chile," Sustainability, MDPI, vol. 15(9), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:184-189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.